28,582 research outputs found

    Stability windows for proto-quark stars

    Full text link
    We investigate the existence of possible stable strange matter and related stability windows at finite temperature for different models that are generally applied to describe quark stars, namely, the quark-mass density dependent model, the MIT bag model and the Nambu-Jona-Lasinio model. We emphasize that, although the limits for stable strange matter depend on a comparison with the ground state of 56Fe, which is a zero temperature state, the quantity that has to be used in the search for strange matter in proto-quark stars is the free energy and we analyze stability windows up to temperatures of the order of 40 MeV. The effects of strong magnetic fields on stability windows are computed and the resulting mass-radius relations for different stages of the proto-quark star are analyzed.Comment: Published versio

    A Radial Velocity Study of the Intermediate Polar EX Hydrae

    Full text link
    A study on the intermediate polar EX Hya is presented, based on simultaneous photometry and high dispersion spectroscopic observations, during four consecutive nights. The strong photometric modulation related to with the 67-min spin period of the primary star is clearly present, as well as the narrow eclipses associated to the orbital modulation. Since our eclipse timings have been obtained almost 91,000 cycles since the last reported observations, we present new linear ephemeris, although we cannot rule out a sinusoidal variation suggested by previous authors. The system mainly shows double-peaked Hα\alpha, Hβ\beta and HeI λ\lambda5876 \AA emission lines. From the profile of the Hα\alpha line, we find two components; one with a steep rise and velocities not larger than ∼\sim1000 km s−1^{-1} and another broader component extending up to ∼\sim2000 km s−1^{-1}, which we interpret as coming mainly from the inner disc. A strong and variable hotspot is found and a stream-like structure is seen at times. We show that the best solution correspond to K1=58±5K_1 = 58 \pm 5 km s−1^{-1} from Hα\alpha, from the two emission components, which are both in phase with the orbital modulation. We remark on a peculiar effect in the radial velocity curve around phase zero, which could be interpreted as a Rositter-MacLaughlin-like effect, which has been taken into account before deriving K1K_1. This value is compatible with the values found in high-resolution both in the ultraviolet and X-ray. We find: M1=0.78±0.03M_{1} = 0.78 \pm 0.03 M⊙_{\odot}, M2=0.10±0.02 M_{2} = 0.10 \pm 0.02 M⊙_{\odot} and a=0.67±0.01a = 0.67 \pm 0.01 R⊙_{\odot}. Doppler Tomography has been applied, to construct six Doppler tomograms for single orbital cycles spanning the four days of observations to support our conclusions. Our results indicate that EX Hya has a well formed disc and that the magnetosphere should extend only to about 3.75 RWD3.75\,R_{\rm{WD}}.Comment: 16 pages, 14 figures, accepted for publication in MNRA

    On the relation of the gravitino mass and the GUT parameters

    Get PDF
    In this article we consider the local supersymmetry breaking and the broken SU(5) symmetry permisible by dilaton vacuum configuration in supergravity theories. We establish the parameter relation of spontaneuos breaking of supersymmetry and of the GUT theory.Comment: 12 pages, file written in Revtex forma

    Functional Optimization in Complex Excitable Networks

    Full text link
    We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitions to this regime, and show a monotonous dependence of critical parameters on the heterogeneity of the wiring distribution. Such correlation between topology and functionality implies, in particular, that tasks which require unstable behavior --such as pattern recognition, family discrimination and categorization-- can be most efficiently performed on highly heterogeneous networks. It also follows a possible explanation for the abundance in nature of scale--free network topologies.Comment: 7 pages, 3 figure
    • …
    corecore