1,128 research outputs found
Analysis of Vibrations in Large Flexible Hybrid Systems
The mathematical model of a real flexible elastic system with distributed and
discrete parameters is considered. It is a partial differential equation with
non-classical boundary conditions. Complexity of the boundary conditions
results in the impossibility to find exact analytical solutions. To address the
problem, we use the asymptotical method of small parameter together with the
numerical method of normal fundamental systems of solutions. These methods
allow us to investigate vibrations, and a technique for determination of
complex eigenvalues of the considered boundary value problem is developed. The
conditions, at which vibration processes of different character take place, are
defined. Dependence of the vibration frequencies on physical parameters of the
hybrid system is studied. We show that introduction of different feedbacks into
the system allow one to control the frequency spectrum, in which excitation of
vibrations is possible.Comment: Accepted for publication by the Global Journal of "Pure and Applied
Mathematics". To be partially presented at the Sixth International Conference
"Symmetry in Nonlinear Mathematical Physics", June 20-26, 2005, Institute of
Mathematics, National Academy of Sciences of Ukraine, Kyiv (Kiev), Ukrain
A Formulation of Noether's Theorem for Fractional Problems of the Calculus of Variations
Fractional (or non-integer) differentiation is an important concept both from
theoretical and applicational points of view. The study of problems of the
calculus of variations with fractional derivatives is a rather recent subject,
the main result being the fractional necessary optimality condition of
Euler-Lagrange obtained in 2002. Here we use the notion of Euler-Lagrange
fractional extremal to prove a Noether-type theorem. For that we propose a
generalization of the classical concept of conservation law, introducing an
appropriate fractional operator.Comment: Accepted for publication in the Journal of Mathematical Analysis and
Application
Noether's Theorem on Time Scales
We show that for any variational symmetry of the problem of the calculus of
variations on time scales there exists a conserved quantity along the
respective Euler-Lagrange extremals.Comment: Partially presented at the 6th International ISAAC Congress, August
13 to August 18, 2007, Middle East Technical University, Ankara, Turke
A Maple interface for computing variational symmetries in optimal control
A computer algebra package, for the automatic computation of variational symmetries in optimal control, was recently developed by the authors [2,3]. Now we present a graphical user interface which permit to interact, in a point-and-click environment, with all the previous symbolical tools
Computation of conservation laws in optimal control
Making use of a computer algebra system, we define computational tools to identify symmetries and conservation laws in optimal control
An integral boundary fractional model to the world population growth
We consider a fractional differential equation
of order , ,
involving a -Caputo fractional derivative
subject to initial conditions on function and its
first derivative and an integral boundary condition
that depends on the unknown function. As an application,
we investigate the world population growth. We find an order
and a function for which the solution of our
fractional model describes given real data
better than available models.The authors are supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT).publishe
Uma forma bidimensional que maximiza a resistência aerodinâmica newtoniana
In a previous work [18, 19] it is investigated, by means of computational
simulations, shapes of nonconvex bodies that maximize resistance to its motion on a
rare ed medium, considering that bodies are moving forward and at the same time slowly
rotating. Here the previous results are improved: we obtain a two-dimensional geometric
shape that confers to the body a resistance very close to the supremum value (R =
1:4965 < 1:5). Um corpo bidimensional, apresentando um ligeiro movimento rotacional, desloca-se num meio rarefeito de partÃculas que colidem com ele de uma forma perfeitamente elástica. Em investigações que os dois primeiros autores realizaram anteriormente [18, 19], procuraram-se formas de corpos que maximizassem a força de travagem do meio ao seu movimento. Dando continuidade a esse estudo, encetam-se agora novas investigações que
culminam num resultado que representa um grande avanço qualitativo relativamente aos então alcançados. Esse resultado, que agora se apresenta, consiste numa forma bidimensional que confere ao corpo uma resistência muito próxima do seu limite teórico. Mas o seu interesse não se fica pela maximização da resistência newtoniana; atendendo à s suas caracterÃsticas, apontam-se ainda outros domÃnios de aplicação onde se pensa poder vir
a revelar-se de grande utilidade. Tendo a forma óptima encontrada resultado de estudos numéricos, é objecto de um estudo adicional de natureza analÃtica, onde se demonstram algumas propriedades importantes que explicam em grande parte o seu virtuosismo
Uma forma bidimensional que maximiza a resistência aerodinâmica newtoniana
In a previous work [18, 19] it is investigated, by means of computational
simulations, shapes of nonconvex bodies that maximize resistance to its motion on a
rare ed medium, considering that bodies are moving forward and at the same time slowly
rotating. Here the previous results are improved: we obtain a two-dimensional geometric
shape that confers to the body a resistance very close to the supremum value (R =
1:4965 < 1:5). Um corpo bidimensional, apresentando um ligeiro movimento rotacional, desloca-se num meio rarefeito de partÃculas que colidem com ele de uma forma perfeitamente elástica. Em investigações que os dois primeiros autores realizaram anteriormente [18, 19], procuraram-se formas de corpos que maximizassem a força de travagem do meio ao seu movimento. Dando continuidade a esse estudo, encetam-se agora novas investigações que
culminam num resultado que representa um grande avanço qualitativo relativamente aos então alcançados. Esse resultado, que agora se apresenta, consiste numa forma bidimensional que confere ao corpo uma resistência muito próxima do seu limite teórico. Mas o seu interesse não se fica pela maximização da resistência newtoniana; atendendo à s suas caracterÃsticas, apontam-se ainda outros domÃnios de aplicação onde se pensa poder vir
a revelar-se de grande utilidade. Tendo a forma óptima encontrada resultado de estudos numéricos, é objecto de um estudo adicional de natureza analÃtica, onde se demonstram algumas propriedades importantes que explicam em grande parte o seu virtuosismo
Dynamics of Controlled Hybrid Systems of Aerial Cable-Ways
Dynamics of the hybrid systems of aerial cable-ways is investigated. The
eigenvalue problems are considered for such hybrid systems with different
assumptions. An overview of different methods for eigenvalue problems is given.
In the research, the method of the normal fundamental systems is applied, which
turns out to be very effective for the considered problems. Changes of
dynamical characteristics of the systems depending on the controlled parameter
are studied.Comment: Accepted (15-May-2006) to the Proceedings of the "International
Conference of Hybrid Systems and Applications", The University of Louisiana,
Lafayette, LA, USA, May 22-26 2006, to be published in the journal "Nonlinear
Analysis: Hybrid Systems and Applications
Noether's symmetry theorem for nabla problems of the calculus of variations
We prove a Noether-type symmetry theorem and a DuBois-Reymond necessary
optimality condition for nabla problems of the calculus of variations on time
scales.Comment: Submitted 20/Oct/2009; Revised 27/Jan/2010; Accepted 28/July/2010;
for publication in Applied Mathematics Letter
- …