4,042 research outputs found
Eulerian polynomials via the Weyl algebra action
Through the action of the Weyl algebra on the geometric series, we establish a generalization
of the Worpitzky identity and new recursive formulae for a family of
polynomials including the classical Eulerian polynomials. We obtain an extension
of the Dobi´nski formula for the sum of rook numbers of a Young diagram by replacing
the geometric series with the exponential series. Also, by replacing the derivative
operator with the q-derivative operator, we extend these results to the q-analogue setting
including the q-hit numbers. Finally, a combinatorial description and a proof of
the symmetry of a family of polynomials introduced by one of the authors are provided
Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine
[EN] Zein, a prolamine obtained from maize, was employed to encapsulate a fish oil highly enriched with docosahexaenoic acid (DHA) by an innovative process termed electrospraying assisted by pressurized gas (EAPG). This technology combines high electric voltage with pneumatic spray to yield a high-throughput encapsulation process. Semi-spherical zein flowable capsules with mean sizes of 1.4 mu m containing the DHA-enriched fish oil were produced by EAPG from inert ethanol solutions at room conditions, presenting a high encapsulation efficiency. The oxidative stability tests carried out in the zein microcapsules obtained by EAPG showed that the DHA-enriched fish oil was efficiently protected over storage time. Sensory tests were also performed on fortified reconstituted milk with the freshly prepared zein/DHA-enriched fish oil microcapsules, suggesting negligible oxidation effects after 45 days. The results described herein indicate that EAPG is a promising innovative high-throughput electrospraying-based methodology for the encapsulation of bioactives and, therefore, the resultant DHA-enriched fish oil containing microcapsules can be industrially applied for the formulation of fortified foods. Industrial relevance: An innovative process, termed electrospraying assisted by pressurized gas (EAPG), is herein originally presented as a novel encapsulation methodology. This technology is based on the combination of high voltage and pneumatic spray, allowing the formation of microcapsules at room temperature conditions. Thus, EAPG shows a great deal of potential to encapsulate nutraceuticals and other bioactives that are sensitive to thermal degradation and/or oxidation. The resultant bioactive-containing capsules can be, thereafter, applied to develop novel fortified food products.The authors would like to thank the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2015-63855-C2-1-R and to the H2020 EU project YPACK (reference number 773872) for funding.Busolo, M.; Torres-Giner, S.; Prieto, C.; Lagaron, JM. (2019). Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science & Emerging Technologies. 51:12-19. https://doi.org/10.1016/j.ifset.2018.04.007S121951Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 49(1), 379-388. doi:10.1016/j.foodres.2012.07.031Anwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 105(2), 367-378. doi:10.1016/j.jfoodeng.2011.02.047Anwar, S. H., Weissbrodt, J., & Kunz, B. (2010). Microencapsulation of Fish Oil by Spray Granulation and Fluid Bed Film Coating. Journal of Food Science, 75(6), E359-E371. doi:10.1111/j.1750-3841.2010.01665.xBakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2015). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182. doi:10.1111/1541-4337.12179Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging Technologies, 16, 211-217. doi:10.1016/j.ifset.2012.06.008Chen, W., Wang, H., Zhang, K., Gao, F., Chen, S., & Li, D. (2016). Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Applied Biochemistry and Biotechnology, 179(7), 1129-1142. doi:10.1007/s12010-016-2054-3Eltayeb, M., Stride, E., Edirisinghe, M., & Harker, A. (2016). Electrosprayed nanoparticle delivery system for controlled release. Materials Science and Engineering: C, 66, 138-146. doi:10.1016/j.msec.2016.04.001Encina, C., Vergara, C., Giménez, B., Oyarzún-Ampuero, F., & Robert, P. (2016). Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science & Technology, 56, 46-60. doi:10.1016/j.tifs.2016.07.014Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011Filippidi, E., Patel, A. R., Bouwens, E. C. M., Voudouris, P., & Velikov, K. P. (2014). All-Natural Oil-Filled Microcapsules from Water-Insoluble Proteins. Advanced Functional Materials, 24(38), 5962-5968. doi:10.1002/adfm.201400359Ganesan, B., Brothersen, C., & McMahon, D. J. (2013). Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. Critical Reviews in Food Science and Nutrition, 54(1), 98-114. doi:10.1080/10408398.2011.578221García-Moreno, P. J., Özdemir, N., Stephansen, K., Mateiu, R. V., Echegoyen, Y., Lagaron, J. M., … Jacobsen, C. (2017). Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 69, 273-285. doi:10.1016/j.foodhyd.2017.02.013García-Moreno, P. J., Stephansen, K., van der Kruijs, J., Guadix, A., Guadix, E. M., Chronakis, I. S., & Jacobsen, C. (2016). Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 183, 39-49. doi:10.1016/j.jfoodeng.2016.03.015Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82-91. doi:10.1016/j.foodhyd.2011.11.013Heinzelmann, K., Franke, K., Jensen, B., & Haahr, A.-M. (2000). Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. European Journal of Lipid Science and Technology, 102(2), 114-121. doi:10.1002/(sici)1438-9312(200002)102:23.0.co;2-0Hogan, S. A., O’Riordan, E. D., & O’Sullivan, M. (2003). Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20(5), 675-688. doi:10.3109/02652040309178355Hong, X., Mahalingam, S., & Edirisinghe, M. (2017). Simultaneous Application of Pressure-Infusion-Gyration to Generate Polymeric Nanofibers. Macromolecular Materials and Engineering, 302(6), 1600564. doi:10.1002/mame.201600564Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200-207. doi:10.1016/j.phrs.2009.10.007Moomand, K., & Lim, L.-T. (2014). Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Research International, 62, 523-532. doi:10.1016/j.foodres.2014.03.054Park, J.-M., Kwon, S.-H., Han, Y.-M., Hahm, K.-B., & Kim, E.-H. (2013). Omega-3 Polyunsaturated Fatty Acids as Potential Chemopreventive Agent for Gastrointestinal Cancer. Journal of Cancer Prevention, 18(3), 201-208. doi:10.15430/jcp.2013.18.3.201Partanen, R., Raula, J., Seppänen, R., Buchert, J., Kauppinen, E., & Forssell, P. (2008). Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. Journal of Agricultural and Food Chemistry, 56(14), 5717-5722. doi:10.1021/jf8005849Pereira, D., Valentão, P., & Andrade, P. (2014). Nano- and Microdelivery Systems for Marine Bioactive Lipids. Marine Drugs, 12(12), 6014-6027. doi:10.3390/md12126014Prieto, C., & Calvo, L. (2017). The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids, 128, 227-234. doi:10.1016/j.supflu.2017.06.003Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459. doi:10.1111/j.1365-277x.2004.00552.xShams, T., Parhizkar, M., Illangakoon, U. E., Orlu, M., & Edirisinghe, M. (2017). Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization. Materials & Design, 136, 204-213. doi:10.1016/j.matdes.2017.09.052Shantha, N. C., & Decker, E. A. (1994). Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. Journal of AOAC INTERNATIONAL, 77(2), 421-424. doi:10.1093/jaoac/77.2.421Siriwardhana, N., Kalupahana, N. S., & Moustaid-Moussa, N. (2012). Health Benefits of n-3 Polyunsaturated Fatty Acids. Advances in Food and Nutrition Research, 211-222. doi:10.1016/b978-0-12-416003-3.00013-5Tapia-Hernández, J. A., Torres-Chávez, P. I., Ramírez-Wong, B., Rascón-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C. G., … Rodríguez-Félix, F. (2015). Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. Journal of Agricultural and Food Chemistry, 63(19), 4699-4707. doi:10.1021/acs.jafc.5b01403Tihminlioglu, F., Atik, İ. D., & Özen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96(3), 342-347. doi:10.1016/j.jfoodeng.2009.08.018Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., & Lagaron, J. M. (2010). Stabilization of a Nutraceutical Omega-3 Fatty Acid by Encapsulation in Ultrathin Electrosprayed Zein Prolamine. Journal of Food Science, 75(6), N69-N79. doi:10.1111/j.1750-3841.2010.01678.xTorres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Vaughan, V. C., Hassing, M.-R., & Lewandowski, P. A. (2013). Marine polyunsaturated fatty acids and cancer therapy. British Journal of Cancer, 108(3), 486-492. doi:10.1038/bjc.2012.586Wang, Y., Liu, W., Chen, X. D., & Selomulya, C. (2016). Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 175, 74-84. doi:10.1016/j.jfoodeng.2015.12.007Woods, J., & Mellon, M. (1941). Thiocyanate Method for Iron: A Spectrophotometric Study. Industrial & Engineering Chemistry Analytical Edition, 13(8), 551-554. doi:10.1021/i560096a013Xiao, D., Davidson, P. M., & Zhong, Q. (2011). Release and antilisterial properties of nisin from zein capsules spray-dried at different temperatures. LWT - Food Science and Technology, 44(10), 1977-1985. doi:10.1016/j.lwt.2011.07.017Yang, H., Feng, K., Wen, P., Zong, M.-H., Lou, W.-Y., & Wu, H. (2017). Enhancing oxidative stability of encapsulated fish oil by incorporation of ferulic acid into electrospun zein mat. LWT, 84, 82-90. doi:10.1016/j.lwt.2017.05.045Zainal, Z., Longman, A. J., Hurst, S., Duggan, K., Caterson, B., Hughes, C. E., & Harwood, J. L. (2009). Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthritis and Cartilage, 17(7), 896-905. doi:10.1016/j.joca.2008.12.009Zeisel, S. H. (1999). Regulation of «Nutraceuticals». Science, 285(5435), 1853-1855. doi:10.1126/science.285.5435.1853Zhang, Y., Cui, L., Li, F., Shi, N., Li, C., Yu, X., … Kong, W. (2016). Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. International Journal of Pharmaceutics, 513(1-2), 191-210. doi:10.1016/j.ijpharm.2016.09.02
University-enterprises: a win-win relationship, from business to research
Teaching at University is always a difficult task because it implies too much theoretical lessons while students ask for practical knowledge and Enterprises claim for good junior professionals. Finding an equilibrium among all the interests is challenging but at the same time, it is the key of success. This work shows the experience of teaching in collaboration with companies to achieve a more practical and attractive approach to day-to-day Engineering work while meeting teaching objectives. It is a win-win relationship since it motivates students because they see the direct relationship between their studies and the future job; it also helps teachers to know the knowledge required by engineering companies and, besides, enterprises will have future engineers better trained, already familiar with process and tools. Furthermore, it also increases the collaborations between University and enterprises, which is key to innovate and develop new business modelsPostprint (published version
Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging
[EN] In this research, different contents of eugenol in the 2.5-25 wt.% range were first incorporated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by electrospinning and then subjected to annealing to obtain antimicrobial monolayers. The most optimal concentration of eugenol in the PHBV monolayer was 15 wt.% since it showed high electrospinnability and thermal stability and also yielded the highest bacterial reduction against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This eugenol-containing monolayer was then selected to be applied as an interlayer between a structural layer made of a cast-extruded poly(3-hydroxybutyrate) (PHB) sheet and a commercial PHBV film as the food contact layer. The whole system was, thereafter, annealed at 160°C for 10 s to develop a novel multilayer active packaging material. The resultant multilayer showed high hydrophobicity, strong adhesion and mechanical resistance, and improved barrier properties against water vapor and limonene vapors. The antimicrobial activity of the multilayer structure was also evaluated in both open and closed systems for up to 15 days, showing significant reductions (R ¿ 1 and < 3) for the two strains of food-borne bacteria. Higher inhibition values were particularly attained against S. aureus due to the higher activity of eugenol against the cell membrane of Gram positive (G+) bacteria. The multilayer also provided the highest antimicrobial activity for the closed system, which better resembles the actual packaging and it was related to the headspace accumulation of the volatile compounds. Hence, the here-developed multilayer fully based on polyhydroxyalkanoates (PHAs) shows a great deal of potential for antimicrobial packaging applications using biodegradable materials to increase both quality and safety of food products.This research was funded by the Spanish Ministry of Science
and Innovation (MICI) through the RTI2018-097249-B-C21
program number and the H2020 EU project YPACK (reference
number 773872).
KF-L is a recipient of a Santiago Grisolía (Ref.
0001426013N810001A201) research contract of the Valencian
Government (GVA) whereas ST-G holds a Juan de la Cierva¿
Incorporación contract (IJCI-2016-29675) from MICI. The
authors would also like to thank the Unidad Asociada IATA-UJI
Plastics Technology.Figueroa-López, KJ.; Cabedo, L.; Lagaron, JM.; Torres Giner, S. (2020). Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Frontiers in Nutrition. 7:1-16. https://doi.org/10.3389/fnut.2020.00140S1167Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177. doi:10.1016/j.tifs.2016.09.013Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10(2), 52-68. doi:10.1016/s0924-2244(99)00019-9Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, Conservation and Recycling, 85, 54-66. doi:10.1016/j.resconrec.2013.05.008Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. doi:10.1016/j.biortech.2019.121427Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138. doi:10.1016/j.jclepro.2020.120138Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, 122478. doi:10.1016/j.biortech.2019.122478Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536-547. doi:10.1016/j.ijbiomac.2019.03.099Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology, 10(6), 1338-1352. doi:10.1111/1751-7915.12776Bhatia, S. K., Gurav, R., Choi, T.-R., Jung, H.-R., Yang, S.-Y., Moon, Y.-M., … Yang, Y.-H. (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. doi:10.1016/j.biortech.2018.09.122Bhatia, S. K., Shim, Y.-H., Jeon, J.-M., Brigham, C. J., Kim, Y.-H., Kim, H.-J., … Yang, Y.-H. (2015). Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess and Biosystems Engineering, 38(8), 1479-1484. doi:10.1007/s00449-015-1390-yPark, Y.-L., Bhatia, S. K., Gurav, R., Choi, T.-R., Kim, H. J., Song, H.-S., … Yang, Y.-H. (2020). Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules, 154, 929-936. doi:10.1016/j.ijbiomac.2020.03.129Hong, J.-W., Song, H.-S., Moon, Y.-M., Hong, Y.-G., Bhatia, S. K., Jung, H.-R., … Yang, Y.-H. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603-610. doi:10.1007/s00449-018-02066-6Vu, D. H., Åkesson, D., Taherzadeh, M. J., & Ferreira, J. A. (2020). Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology, 298, 122393. doi:10.1016/j.biortech.2019.122393Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271-282. doi:10.1016/j.micres.2016.07.010Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Vahabi, H., Rohani Rad, E., Parpaite, T., Langlois, V., & Saeb, M. R. (2019). Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings, 133, 85-89. doi:10.1016/j.porgcoat.2019.04.044Jung, H.-R., Jeon, J.-M., Yi, D.-H., Song, H.-S., Yang, S.-Y., Choi, T.-R., … Yang, Y.-H. (2019). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 138, 370-378. doi:10.1016/j.ijbiomac.2019.07.091Rehm, B. H. A., & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 25(1-3), 3-19. doi:10.1016/s0141-8130(99)00010-0Tarawat, S., Incharoensakdi, A., & Monshupanee, T. (2020). Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. Journal of Applied Phycology, 32(2), 1095-1102. doi:10.1007/s10811-020-02040-4Bhatia, S. K., Yoon, J.-J., Kim, H.-J., Hong, J. W., Gi Hong, Y., Song, H.-S., … Yang, Y.-H. (2018). Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresource Technology, 257, 92-101. doi:10.1016/j.biortech.2018.02.056Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2009). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85(6), 1687-1696. doi:10.1007/s00253-009-2397-6Cinelli, P., Seggiani, M., Mallegni, N., Gigante, V., & Lazzeri, A. (2019). Processability and Degradability of PHA-Based Composites in Terrestrial Environments. International Journal of Molecular Sciences, 20(2), 284. doi:10.3390/ijms20020284Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., … Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi:10.1016/j.micpath.2019.103580Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. doi:10.1046/j.1365-2672.2000.00969.xJia, C., Cao, D., Ji, S., Zhang, X., & Muhoza, B. (2020). Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocolloids, 104, 105717. doi:10.1016/j.foodhyd.2020.105717Kim, J., Marshall, M. R., & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11), 2839-2845. doi:10.1021/jf00059a013Walsh, S. E., Maillard, J.-Y., Russell, A. D., Catrenich, C. E., Charbonneau, D. L., & Bartolo, R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 94(2), 240-247. doi:10.1046/j.1365-2672.2003.01825.xELGAYYAR, M., DRAUGHON, F. A., GOLDEN, D. A., & MOUNT, J. R. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection, 64(7), 1019-1024. doi:10.4315/0362-028x-64.7.1019Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115. doi:10.1016/j.jep.2010.04.025Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435. doi:10.1038/nrmicro2333Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1). doi:10.1186/s13756-019-0559-6Li, Y., Dong, Q., Chen, J., & Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. doi:10.1016/j.postharvbio.2019.111028Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018). Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. Journal of Agricultural and Food Chemistry, 66(2), 457-466. doi:10.1021/acs.jafc.7b04312Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:10.1016/j.msec.2018.08.004Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Marangoni Júnior, L., Oliveira, L. M. de, Bócoli, P. F. J., Cristianini, M., Padula, M., & Anjos, C. A. R. (2020). Morphological, thermal and mechanical properties of polyamide and ethylene vinyl alcohol multilayer flexible packaging after high-pressure processing. Journal of Food Engineering, 276, 109913. doi:10.1016/j.jfoodeng.2020.109913Gómez Ramos, M. J., Lozano, A., & Fernández-Alba, A. R. (2019). High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta, 191, 180-192. doi:10.1016/j.talanta.2018.08.023Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M. (2020). Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464. doi:10.1016/j.fpsl.2020.100464Garrido-López, Á., & Tena, M. T. (2010). Study of multilayer packaging delamination mechanisms using different surface analysis techniques. Applied Surface Science, 256(12), 3799-3805. doi:10.1016/j.apsusc.2010.01.029Úbeda, S., Aznar, M., Vera, P., Nerín, C., Henríquez, L., Taborda, L., & Restrepo, C. (2017). Overall and specific migration from multilayer high barrier food contact materials – kinetic study of cyclic polyester oligomers migration. Food Additives & Contaminants: Part A, 34(10), 1784-1794. doi:10.1080/19440049.2017.1346390Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., & Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156-1186. doi:10.1111/1541-4337.12556Mount, E. (2010). Coextrusion equipment for multilayer flat films and sheets. Multilayer Flexible Packaging, 75-95. doi:10.1016/b978-0-8155-2021-4.10006-1Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106-114. doi:10.1016/j.foodhyd.2012.12.007Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zQuiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Akinalan Balik, B., Argin, S., Lagaron, J. M., & Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences, 9(23), 5136. doi:10.3390/app9235136Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 9(11), 1874-1884. doi:10.1007/s11947-016-1772-4Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005Torres‐Giner, S., Ocio, M. J., & Lagaron, J. M. (2008). Development of Active Antimicrobial Fiber‐Based Chitosan Polysaccharide Nanostructures using Electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., … Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, 95, 33-42. doi:10.1016/j.foodhyd.2019.04.019Shao, Y., Wu, C., Wu, T., Li, Y., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydrate Polymers, 193, 144-152. doi:10.1016/j.carbpol.2018.03.101Piletti, R., Bugiereck, A. M., Pereira, A. T., Gussati, E., Dal Magro, J., Mello, J. M. M., … Fiori, M. A. (2017). Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Materials Science and Engineering: C, 75, 259-271. doi:10.1016/j.msec.2017.02.075Da Silva, C. G., Kano, F. S., & dos Santos Rosa, D. (2019). Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. Journal of Thermal Analysis and Calorimetry, 138(4), 2375-2386. doi:10.1007/s10973-019-08190-zFigueroa-Lopez, K. J., Enescu, D., Torres-Giner, S., Cabedo, L., Cerqueira, M. A., Pastrana, L., … Lagaron, J. M. (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing or
- …