8 research outputs found

    Comparative Pharmacokinetics of Δ9-Tetrahydrocannabinol in Adolescent and Adult Male Mice

    Full text link
    We investigated the pharmacokinetic properties of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.6, and 5 mg/kg, i.p.) to pubertal adolescent (37-day-old) and adult (70-day-old) mice. Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma, brain, and white adipose tissue (WAT) using a validated isotope-dilution liquid chromatography/tandem mass spectrometry assay. Δ9-THC (5 mg/kg) reached 50% higher circulating concentration in adolescent mice than in adult mice. A similar age-dependent difference was observed in WAT. Conversely, 40%-60% lower brain concentrations and brain-to-plasma ratios for Δ9-THC and 50%-70% higher brain concentrations for Δ9-THC metabolites were measured in adolescent animals relative to adult animals. Liver microsomes from adolescent mice converted Δ9-THC into 11-COOH-THC twice as fast as adult microsomes. Moreover, the brains of adolescent mice contained higher mRNA levels of the multidrug transporter breast cancer resistance protein, which may extrude Δ9-THC from the brain, and higher mRNA levels of claudin-5, a protein that contributes to blood-brain barrier integrity. Finally, administration of Δ9-THC (5 mg/kg) reduced spontaneous locomotor activity in adult, but not adolescent, animals. The results reveal the existence of multiple differences in the distribution and metabolism of Δ9-THC between adolescent and adult male mice, which might influence the pharmacological response to the drug. SIGNIFICANCE STATEMENT: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes persistent changes in brain function. These studies generally overlook the impact that age-dependent changes in the distribution and metabolism of the drug might exert on its pharmacological effects. This report provides a comparative analysis of the pharmacokinetic properties of Δ9-THC in adolescent and adult male mice and outlines multiple functionally significant dissimilarities in the distribution and metabolism of Δ9-THC between these two age groups

    Targeting NAAA counters dopamine neuron loss and symptom progression in mouse models of parkinsonism.

    Full text link
    The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention

    Pharmacokinetic, behavioral, and brain activity effects of Δ9-tetrahydrocannabinol in adolescent male and female rats

    Full text link
    Δ9-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents. However, though the relevance of these studies depends upon human-relevant dosing, surprisingly little is known about THC pharmacology and its effects on behavior and brain activity in adolescent rodents-especially in females. Here, we conducted a systematic investigation of THC pharmacokinetics, metabolism and distribution in blood and brain, and of THC effects upon behavior and neural activity in adolescent Long Evans rats of both sexes. We administered THC during an early-middle adolescent window (postnatal days 27-45) in which the brain may be particularly sensitive to developmental perturbation by THC. We determined the pharmacokinetic profile of THC and its main first-pass metabolites (11-hydroxy-THC and 11-nor-9-carboxy-THC) in blood and brain following acute injection (0.5 or 5 mg/kg, intraperitoneal). We also evaluated THC effects on behavioral assays of anxiety, locomotion, and place conditioning, as well as c-Fos expression in 14 brain regions. Confirming previous work, we find marked sex differences in THC metabolism, including a female-specific elevation in the bioactive metabolite 11-hydroxy-THC. Furthermore, we find dose-dependent and sex-dependent effects on behavior, neural activity, and functional connectivity across multiple nodes of brain stress and reward networks. Our findings are relevant for interpreting results of rat adolescent THC exposure studies, and may lend new insights into how THC impacts the brain in a sex-dependent manner
    corecore