472 research outputs found

    Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater

    Get PDF
    This study analyzed the performances of a hybrid membrane aerated biofilm reactor (MABR) pilot plant in terms of nutrients removal of the attached growth and suspended biomass in comparison with a conventional activated sludge (CAS) system at different sludge retention time (SRT) (20−3) days. Overall, the MABR showed better performances than the CAS in terms of TSS (86% vs 79%), COD (89% vs 85%) and total nitrogen (80% vs 65%). The minimum SRT for achieving complete nitrification in the MABR was close to 3 days, corresponding to a SRT in the aerobic compartment of 1.9 days, whereas in the CAS it was equal to 8 days (aerobic SRT of 4.8 days). Nitrification rate in biofilm was on average equal to 0.40 gNH4-N h−1 (2.40 gNH4-N m−2d−1). Its contribution to the overall nitrification in the MABR plant was 25–30% on average, although it increased when the SRT was decreased. Particle size distribution and microscopic analyses showed particles of biofilm detached from the membrane of the MABR. The seeding effect allowed sustaining nitrification of the suspend biomass at very low SRT. The nitrification rate observed in the suspended biomass in the MABR slightly decreased from 3.42 mgNH4-N gVSS−1 h−1 to 2.87 mgNH4-N gVSS−1 h−1 when the SRT was decreased from 20 days and 3 days, whereas in the CAS it collapsed from 2.33 mgNH4-N gVSS−1 h−1 to 0.47 mgNH4-N gVSS−1 h−1, because of nitrifying washout. Moreover, the biofilm detachment involved a positive effect in settling properties of the suspended biomass

    Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation

    Get PDF
    This study investigated the treatment of a shipboard slop containing commercial gasoline in a pilot plant scale consisting of a membrane biological reactor (MBR) and photocatalytic reactor (PCR) acting in series. The MBR contributed for approximately 70% to the overall slop purification. More precisely, the biological process was able to remove approximately 40%, on average, of the organic pollution in the slop. Nevertheless, the membrane was capable to retain a large amount of organic molecules within the system, amounting for a further 30% of the influent total organic content removal. However, this affected the membrane fouling, thus resulting in the increase of the pore blocking mechanism that accounted for approximately 20% to the total resistance to filtration (2.85∙10 13 m −1 ), even if a significant restoration of the original membrane permeability was obtained after chemical cleanings. On the other hand, the biological treatment produced a clear solution for the photocatalytic system, thereby optimizing the light penetration and generation of highly oxidizing active oxygen species that enabled the degradation of bio-recalcitrant compounds. Indeed, low total organic carbon (TOC) values (<10 mg L −1 ) were achieved in the output of the photocatalytic reactor by means of only 60 Einstein (E) of cumulative impinging energy after the addition of K 2 S 2 O 8 . Overall, coupling the two processes enabled very high TOC removal (ca. 95%)

    Biomethane production from anaerobic co-digestion of selected organic fraction of municipal solid waste (Ofmsw) with sewage sludge: Effect of the inoculum to substrate ratio (isr) and mixture composition on process performances

    Get PDF
    The aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW:40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d). Synergistic effects were highlighted in the mix-tures having OFMSW below 60%, determining an increase of approximately 40% in methane production than the OFMSW and SS digestion as a sole substrate. The experimental data demonstrated that co-digestion of OFMSW and SS resulted in an increase in the productivity of methane than anaerobic digestion using the sole substrates, producing higher yields or production rates while depending on the ISR and the mixture ratio

    Start-up with or without inoculum? Analysis of an SMBR pilot plant.

    Get PDF
    This study analysed a submerged membrane bioreactor (SMBR) start-up with the purpose of determining the best conditions to carry it out. In order to do this, a hollow fibre membrane module was installed in a submerged configuration in a pilot aerobic reactor. The experiment was then divided in two phases, lasting 65 days each. During phase 1, the pilot plant was started-up without inoculum of activated sludge and no sludge, withdrawal was performed. Conversely, in phase 2, the MBR pilot plant was started-up with sludge inoculum and the sludge concentration was kept constant. In both phases, the volumetric loading rate applied to the pilot plant was kept constant. The authors analysed the difference in carbon removal performances, the evolution of floc sizes and the fouling rate in both phases. The results confirmed that MBRs can be quickly and easily started-up, but the initial start-up strategy can influence membrane fouling. More specifically, the carbon removal performances were similar in both phases, while the fouling rate increased faster during the start-up without inoculum, especially in terms of irreversible deposition of soluble compost on the membrane surface and into membrane pores.This study analysed a submerged membrane bioreactor (SMBR) start-up with the purpose of determining the best conditions to carry it out. In order to do this, a hollow fibre membrane module was installed in a submerged configuration in a pilot aerobic reactor. The experiment was then divided in two phases, lasting 65 days each. During phase 1, the pilot plant was started-up without inoculum of activated sludge and no sludge, withdrawal was performed. Conversely, in phase 2, the MBR pilot plant was started-up with sludge inoculum and the sludge concentration was kept constant. In both phases, the volumetric loading rate applied to the pilot plant was kept constant. The authors analysed the difference in carbon removal performances, the evolution of floc sizes and the fouling rate in both phases. The results confirmed that MBRs can be quickly and easily started-up, but the initial start-up strategy can influence membrane fouling. More specifically, the carbon removal performances were similar in both phases, while the fouling rate increased faster during the start-up without inoculum, especially in terms of irreversible deposition of soluble compost on the membrane surface and into membrane pores

    Preliminary evaluation of biopolymers production by mixed microbial culture from citrus wastewater in a MBR system using respirometric techniques

    Get PDF
    This preliminary study was aimed at evaluating the feasibility to produce biopolymers (BP) from citrus wastewater by mixed microbial culture in an anaerobic/aerobic membrane bioreactor (A/O-MBR). The activated sludge of the A/O-MBR was successfully enriched in microorganisms having a good capacity in producing intracellular biopolymers. The production of BP was found to be about 0.55 mgCOD mgCOD−1 using pure acetate at a concentration of 1000 mgCOD L−1. When using fermented wastewater, the conversion of acetate into BP product was 0.56 mgCOD mgCOD−1 in the test performed with C/N equal to 1000:1, whereas it was only 0.12 mgCOD mgCOD−1 in the test with C/N of 100:5. The results achieved suggested the feasibility to use citrus wastewater as a feedstock for biopolymers production although the low biomass storage capacity (0.26 mgCOD mgCODbiomass−1) suggested the need for optimizing the operating conditions in future studies

    Effect of biomass features on oxygen transfer in conventional activated sludge and membrane bioreactor systems

    Get PDF
    The aim of the present study was to compare the oxygen transfer efficiency in a conventional activated sludge and a membrane bioreactor system. The oxygen transfer was evaluated by means of the oxygen transfer coefficient (kLa)20 and α-factor calculation, under different total suspended solids concentration, extracellular polymeric substances, sludge apparent viscosity and size of the flocs. The (kLa)20 and α-factor showed an exponential decreasing trend with total suspended solid, with a stronger (kLa)20 dependence in the conventional activated sludge than the membrane bioreactor. It was noted that the (kLa)20 in the conventional activated sludge become comparable to that in membrane bioreactor when the TSS concentration in the conventional activated sludge was higher than 5 gTSS L-1. Operating under high carbon to nitrogen ratio, the (kLa)20 increased in both conventional activated sludge and membrane bioreactor because of the sludge deflocculation and a weaker dependence of (kLa)20 with total suspended solid was noted. The results indicated that the most important parameters on the oxygen transfer efficiency were in order: the total suspended solid concentration, flocs size, sludge apparent viscosity, the protein to polysaccharides ratio and extracellular polymeric substances content. Based on the influence of the main biomass features affecting the (kLa)20 and considering the typical operating conditions in both systems, those of membrane bioreactor appeared to be more favorable to oxygen transfer efficiency compared to conventional activated sludge process

    Phenotyping of type 2 diabetes mellitus at onset on the basis of fasting incretin tone: Results of a two-step cluster analysis

    Get PDF
    Aims/Introduction: According to some authors, in type 2 diabetes there is a reduced postprandial action of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). However, little is known about the role of fasting incretins in glucose homeostasis. Our aim was to evaluate, through a two-step cluster analysis, the possibility of phenotyping patients with type 2 diabetes at onset on the basis of fasting GLP-1, GIP and ghrelin. Materials and Methods: A total of 96 patients with type 2 diabetes within 6 months of onset (mean age 62.40 \ub1 6.36 years) were cross-sectionally studied. Clinical, anthropometric and metabolic parameters were evaluated. At fasting the following were carried out: assay of GLP-1, GIP, ghrelin, insulin, C-peptide, glucagon and a panel of adipocytokines (visfatin, resistin, leptin, soluble leptin receptor and adiponectin). Results: The analysis resulted in two clusters: cluster 1 (63 patients) had significantly lower levels of GLP-1 (4.93 \ub1 0.98 vs 7.81 \ub1 1.98 pmol/L; P < 0.001), GIP (12.73 \ub1 9.44 vs 23.88 \ub1 28.56 pmol/L; P < 0.001) and ghrelin (26.54 \ub1 2.94 vs 39.47 \ub1 9.84 pmol/L; P < 0.001) compared with cluster 2 (33 patients). Between the two clusters, no differences in age, duration of disease, sex, clinical-anthropometric parameters, insulin sensitivity and adipocytokines were highlighted. However, cluster 1 was associated with significantly higher levels of glycated hemoglobin (7.4 \ub1 0.61 vs 6.68 \ub1 0.57%, P = 0.007), glucagon (232.02 \ub1 37.27 vs 183.33 \ub1 97.29 ng/L; P = 0.001), fasting glucose (7.85 \ub1 1.60 vs 6.93 \ub1 1.01 mmol/L; P = 0.003) and significantly lower levels of C-peptide (0.12 \ub1 0.11 vs 0.20 \ub1 0.20 nmol/L; P = 0.017). Conclusions: The present study suggests that fasting incretins play an important role in the pathophysiology of type 2 diabetes, which requires to further investigation

    Vegan and sugar-substituted chocolates: assessing physicochemical characteristics by NMR relaxometry, rheology, and DSC

    Get PDF
    The main physicochemical characteristics of novel artisanal chocolates (both dark and milky) intended for vegan consumers or for those requiring assumption of fewer simple sugars, were analysed. Replacement of milk (with coconut copra, almonds, and soy protein isolates), and sucrose (with coconut sugars, stevia and erythritol, respectively) in dark chocolate, were accounted for by means of texture analysis, rheology, water activity, fatty acid composition, differential scanning calorimetry (DSC) and fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry. The vegan sample (i.e., the milk-less one) showed lower values of hardness and adhesiveness as well as a larger peak in the melting behavior at the calorimetric evaluation (DSC). Moreover, the absence of milk resulted in the halving of the yield stress and a decrease in both the apparent and Casson's viscosity. In the sample of chocolate with less sucrose, the peak temperatures measured at the DSC indicate crystallization of cocoa butter in its best form (V beta 2), unlike in dark chocolate, due to the different sugar composition. Similarly, the Casson yield stress (tau 0), increased significantly (almost 70%), with the substitution of sugar. Finally, the results of NMR FFC relaxometry made it possible to identify aggregates of different sizes, laying the basis for its use as a rapid, non-destructive method for chocolate analysis

    Optimization of acetate production from citrus wastewater fermentation

    Get PDF
    Citrus wastewater is a sugar-rich waste stream suitable for the recovery of energy of material from its treatment. In this study, fermentation of citrus wastewater was carried out to assess the optimal conditions to maximize the bioconversion of the organic substrate into acetate. Unbalanced nutrient (C: N: P 200:0.1:0.1) enabled the highest acetate production. The presence of the particulate organic fraction enabled to obtain a higher acetate concentration regardless the initial COD concentration. Initial pH values higher than 5 did not cause substantial differences on the maximum bioconversion of COD into acetate, whereas pH lower than 5 hindered the hydrolysis process. Lastly, the bioconversion rate of the organic substrate into acetate decreased from a maximum of 23% to a minimum of 8% related to the initial COD. The achieved results demonstrated that the characteristics of citrus wastewater enable its valorisation without the need to apply energy-consuming processes

    An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant

    Get PDF
    An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the nitrifying population. Intermittent aeration did not significantly affect the heterotrophic metabolic activity but significantly affected the autotrophic biomass development. Finally, the heterotrophic active biomass was strongly affected by the wastewater characteristics, whereas the resultant autotrophic biomass was considerably affected by the duration of the aerated phase
    • …
    corecore