3 research outputs found

    Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators

    Get PDF
    open access articleDuchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system

    Dynamic Modulation of Mouse Locus Coeruleus Neurons by Vasopressin 1a and 1b Receptors

    Get PDF
    The locus coeruleus (LC) is a brainstem nucleus distinguished by its supply of noradrenaline throughout the central nervous system. Apart from modulating a range of brain functions, such as arousal, cognition and the stress response, LC neuronal excitability also corresponds to the activity of various peripheral systems, such as pelvic viscera and the cardiovascular system. Neurochemically diverse inputs set the tone for LC neuronal activity, which in turn modulates these adaptive physiological and behavioral responses essential for survival. One such LC afferent system which is poorly understood contains the neurohormone arginine-vasopressin (AVP). Here we provide the first demonstration of the molecular and functional characteristics of the LC-AVP system, by characterizing its receptor-specific modulation of identified LC neurons and plasticity in response to stress. High resolution confocal microscopy revealed that immunoreactivity for the AVP receptor 1b (V1b) was located on plasma membranes of noradrenergic and non-noradrenergic LC neurons. In contrast, immunoreactivity for the V1a receptor was exclusively located on LC noradrenergic neurons. No specific signal, either at the mRNA or protein level, was detected for the V2 receptor in the LC. Clusters immunoreactive for V1a-b were located in proximity to profiles immunoreactive for GABAergic and glutamatergic synaptic marker proteins. AVP immunopositive varicosities were also located adjacent to labeling for such synaptic markers. Whole-cell patch clamp electrophysiology revealed that the pharmacological activation of V1b receptors significantly increased the spontaneous activity of 45% (9/20) of recorded noradrenergic neurons, with the remaining 55% (11/20) of cells exhibiting a significant decrease in their basal firing patterns. Blockade of V1a and V1b receptors on their own significantly altered LC neuronal excitability in a similar heterogeneous manner, demonstrating that endogenous AVP sets the basal LC neuronal firing rates. Finally, exposing animals to acute stress increased V1b, but not V1a receptor expression, whilst decreasing AVP immunoreactivity. This study reveals the AVP-V1a-b system as a considerable component of the LC molecular architecture and regulator of LC activity. Since AVP primarily functions as a regulator of homeostasis, the data suggest a novel pathway by modulating the functioning of a brain region that is integral to mediating adaptive responses

    Domain and cell type-specific immunolocalisation of voltage-gated potassium channels in the mouse striatum

    No full text
    open access articleDiverse classes of voltage-gated potassium channels (Kv) are integral to the variety of electrical activity patterns that distinguish different classes of neurons in the brain. A feature of their heterogenous expression patterns is the highly precise manner in which specific cell types target their location within functionally specialised sub-cellular domains. Although Kv expression profiles in cortical brain regions are widely reported, their immunolocalisation in sub-cortical areas such as the striatum, and in associated diseases such as Parkinson’s disease (PD), remain less well described. Therefore, the broad aims of this study were to provide a high resolution immunolocalisation analysis of various Kv subtypes within the mouse striatum and assess their potential plasticity in a model of PD. Immunohistochemistry and confocal microscopy revealed that immunoreactivity for Kv1.1, 1.2 and 1.4 overlapped to varying degrees with excitatory and inhibitory axonal marker proteins suggesting these Kv subtypes are targeted to axons innervating striatal medium spiny neurons (MSNs). Immunoreactivity for Kv1.3 strongly overlapped with signal for mitochondrial marker proteins in MSN somata and dendrites. Kv1.5 immunoreactivity was expressed in parvalbumin-immunopositive neurons whereas Kv1.6 was located in cells immunopositive for microglia. Signal for Kv2.1 was concentrated on the somatic and proximal dendritic plasma membrane of MSNs, whilst immunoreactivity for Kv4.2 was targeted to their distal dendritic regions. Finally, striatal Kv2.1 expression, at both the mRNA and protein levels, was decreased in alpha-synuclein overexpressing mice, yet increased in alpha-synuclein knockout mice, compared to wild-type counterparts. The data indicate a variety of Kv expression patterns that are distinctive to the striatum and susceptible to pathology that mirrors PD. Furthermore, these findings advance our understanding of the molecular diversity of various striatal cell types, and potentially have implications for the homeostatic changes of MSN excitability during associated medical conditions such as PD
    corecore