1,190 research outputs found
Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra
The determination of the densest packings of regular tetrahedra (one of the
five Platonic solids) is attracting great attention as evidenced by the rapid
pace at which packing records are being broken and the fascinating packing
structures that have emerged. Here we provide the most general analytical
formulation to date to construct dense periodic packings of tetrahedra with
four particles per fundamental cell. This analysis results in six-parameter
family of dense tetrahedron packings that includes as special cases recently
discovered "dimer" packings of tetrahedra, including the densest known packings
with density . This study strongly suggests that
the latter set of packings are the densest among all packings with a
four-particle basis. Whether they are the densest packings of tetrahedra among
all packings is an open question, but we offer remarks about this issue.
Moreover, we describe a procedure that provides estimates of upper bounds on
the maximal density of tetrahedron packings, which could aid in assessing the
packing efficiency of candidate dense packings.Comment: It contains 25 pages, 5 figures
Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications
In the first part of this series of two papers, we proposed a theoretical
formalism that enables one to model and categorize heterogeneous materials
(media) via two-point correlation functions S2 and introduced an efficient
heterogeneous-medium (re)construction algorithm called the "lattice-point"
algorithm. Here we discuss the algorithmic details of the lattice-point
procedure and an algorithm modification using surface optimization to further
speed up the (re)construction process. The importance of the error tolerance,
which indicates to what accuracy the media are (re)constructed, is also
emphasized and discussed. We apply the algorithm to generate three-dimensional
digitized realizations of a Fontainebleau sandstone and a boron
carbide/aluminum composite from the two- dimensional tomographic images of
their slices through the materials. To ascertain whether the information
contained in S2 is sufficient to capture the salient structural features, we
compute the two-point cluster functions of the media, which are superior
signatures of the micro-structure because they incorporate the connectedness
information. We also study the reconstruction of a binary laser-speckle pattern
in two dimensions, in which the algorithm fails to reproduce the pattern
accurately. We conclude that in general reconstructions using S2 only work well
for heterogeneous materials with single-scale structures. However, two-point
information via S2 is not sufficient to accurately model multi-scale media.
Moreover, we construct realizations of hypothetical materials with desired
structural characteristics obtained by manipulating their two-point correlation
functions.Comment: 35 pages, 19 figure
Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation
Random sequential addition (RSA) time-dependent packing process, in which
congruent hard hyperspheres are randomly and sequentially placed into a system
without interparticle overlap, is a useful packing model to study disorder in
high dimensions. Of particular interest is the infinite-time {\it saturation}
limit in which the available space for another sphere tends to zero. However,
the associated saturation density has been determined in all previous
investigations by extrapolating the density results for near-saturation
configurations to the saturation limit, which necessarily introduces numerical
uncertainties. We have refined an algorithm devised by us [S. Torquato, O.
Uche, and F.~H. Stillinger, Phys. Rev. E {\bf 74}, 061308 (2006)] to generate
RSA packings of identical hyperspheres. The improved algorithm produce such
packings that are guaranteed to contain no available space using finite
computational time with heretofore unattained precision and across the widest
range of dimensions (). We have also calculated the packing and
covering densities, pair correlation function and structure factor
of the saturated RSA configurations. As the space dimension increases,
we find that pair correlations markedly diminish, consistent with a recently
proposed "decorrelation" principle, and the degree of "hyperuniformity"
(suppression of infinite-wavelength density fluctuations) increases. We have
also calculated the void exclusion probability in order to compute the
so-called quantizer error of the RSA packings, which is related to the second
moment of inertia of the average Voronoi cell. Our algorithm is easily
generalizable to generate saturated RSA packings of nonspherical particles
Statistical properties of determinantal point processes in high-dimensional Euclidean spaces
The goal of this paper is to quantitatively describe some statistical
properties of higher-dimensional determinantal point processes with a primary
focus on the nearest-neighbor distribution functions. Toward this end, we
express these functions as determinants of matrices and then
extrapolate to . This formulation allows for a quick and accurate
numerical evaluation of these quantities for point processes in Euclidean
spaces of dimension . We also implement an algorithm due to Hough \emph{et.
al.} \cite{hough2006dpa} for generating configurations of determinantal point
processes in arbitrary Euclidean spaces, and we utilize this algorithm in
conjunction with the aforementioned numerical results to characterize the
statistical properties of what we call the Fermi-sphere point process for to 4. This homogeneous, isotropic determinantal point process, discussed
also in a companion paper \cite{ToScZa08}, is the high-dimensional
generalization of the distribution of eigenvalues on the unit circle of a
random matrix from the circular unitary ensemble (CUE). In addition to the
nearest-neighbor probability distribution, we are able to calculate Voronoi
cells and nearest-neighbor extrema statistics for the Fermi-sphere point
process and discuss these as the dimension is varied. The results in this
paper accompany and complement analytical properties of higher-dimensional
determinantal point processes developed in \cite{ToScZa08}.Comment: 42 pages, 17 figure
- …