1,408 research outputs found

    Reformulation of the Covering and Quantizer Problems as Ground States of Interacting Particles

    Full text link
    We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd\mathbb{R}^d that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the "void" nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplifies the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. The connections between the covering and quantizer problems and the sphere-packing and number-variance problems are discussed. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper bounds on the quantizer error using sphere-packing solutions, which are generally substantially sharper than an existing upper bound in low to moderately large dimensions. We also demonstrate that disordered saturated sphere packings yield relatively good quantizers. Finally, we remark on possible applications of our results for the detection of gravitational waves.Comment: 52 pages, 9 figures, 8 tables; Changes reflect improvements made during the refereeing proces

    Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra

    Full text link
    The determination of the densest packings of regular tetrahedra (one of the five Platonic solids) is attracting great attention as evidenced by the rapid pace at which packing records are being broken and the fascinating packing structures that have emerged. Here we provide the most general analytical formulation to date to construct dense periodic packings of tetrahedra with four particles per fundamental cell. This analysis results in six-parameter family of dense tetrahedron packings that includes as special cases recently discovered "dimer" packings of tetrahedra, including the densest known packings with density ϕ=4000/4671=0.856347...\phi= 4000/4671 = 0.856347.... This study strongly suggests that the latter set of packings are the densest among all packings with a four-particle basis. Whether they are the densest packings of tetrahedra among all packings is an open question, but we offer remarks about this issue. Moreover, we describe a procedure that provides estimates of upper bounds on the maximal density of tetrahedron packings, which could aid in assessing the packing efficiency of candidate dense packings.Comment: It contains 25 pages, 5 figures

    Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation

    Full text link
    Random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time {\it saturation} limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for near-saturation configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. Uche, and F.~H. Stillinger, Phys. Rev. E {\bf 74}, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space using finite computational time with heretofore unattained precision and across the widest range of dimensions (2d82 \le d \le 8). We have also calculated the packing and covering densities, pair correlation function g2(r)g_2(r) and structure factor S(k)S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average Voronoi cell. Our algorithm is easily generalizable to generate saturated RSA packings of nonspherical particles

    Unexpected Density Fluctuations in Jammed Disordered Sphere Packings

    Full text link
    We computationally study jammed disordered hard-sphere packings as large as a million particles. We show that the packings are saturated and hyperuniform, i.e., that local density fluctuations grow only as a logarithmically-augmented surface area rather than the volume of the window. The structure factor shows an unusual non-analytic linear dependence near the origin, S(k)kS(k)\sim|k|. In addition to exponentially damped oscillations seen in liquids, this implies a weak power-law tail in the total correlation function, h(r)r4h(r)\sim-r^{-4}, and a long-ranged direct correlation function.Comment: Submitted for publicatio

    Controlling the Short-Range Order and Packing Densities of Many-Particle Systems

    Full text link
    Questions surrounding the spatial disposition of particles in various condensed-matter systems continue to pose many theoretical challenges. This paper explores the geometric availability of amorphous many-particle configurations that conform to a given pair correlation function g(r). Such a study is required to observe the basic constraints of non-negativity for g(r) as well as for its structure factor S(k). The hard sphere case receives special attention, to help identify what qualitative features play significant roles in determining upper limits to maximum amorphous packing densities. For that purpose, a five-parameter test family of g's has been considered, which incorporates the known features of core exclusion, contact pairs, and damped oscillatory short-range order beyond contact. Numerical optimization over this five-parameter set produces a maximum-packing value for the fraction of covered volume, and about 5.8 for the mean contact number, both of which are within the range of previous experimental and simulational packing results. However, the corresponding maximum-density g(r) and S(k) display some unexpected characteristics. A byproduct of our investigation is a lower bound on the maximum density for random sphere packings in dd dimensions, which is sharper than a well-known lower bound for regular lattice packings for d >= 3.Comment: Appeared in Journal of Physical Chemistry B, vol. 106, 8354 (2002). Note Errata for the journal article concerning typographical errors in Eq. (11) can be found at http://cherrypit.princeton.edu/papers.html However, the current draft on Cond-Mat (posted on August 8, 2002) is correct

    Phase Behavior of Colloidal Superballs: Shape Interpolation from Spheres to Cubes

    Full text link
    The phase behavior of hard superballs is examined using molecular dynamics within a deformable periodic simulation box. A superball's interior is defined by the inequality x2q+y2q+z2q1|x|^{2q} + |y|^{2q} + |z|^{2q} \leq 1, which provides a versatile family of convex particles (q0.5q \geq 0.5) with cube-like and octahedron-like shapes as well as concave particles (q<0.5q < 0.5) with octahedron-like shapes. Here, we consider the convex case with a deformation parameter q between the sphere point (q = 1) and the cube (q = 1). We find that the asphericity plays a significant role in the extent of cubatic ordering of both the liquid and crystal phases. Calculation of the first few virial coefficients shows that superballs that are visually similar to cubes can have low-density equations of state closer to spheres than to cubes. Dense liquids of superballs display cubatic orientational order that extends over several particle lengths only for large q. Along the ordered, high-density equation of state, superballs with 1 < q < 3 exhibit clear evidence of a phase transition from a crystal state to a state with reduced long-ranged orientational order upon the reduction of density. For q3q \geq 3, long-ranged orientational order persists until the melting transition. The width of coexistence region between the liquid and ordered, high-density phase decreases with q up to q = 4.0. The structures of the high-density phases are examined using certain order parameters, distribution functions, and orientational correlation functions. We also find that a fixed simulation cell induces artificial phase transitions that are out of equilibrium. Current fabrication techniques allow for the synthesis of colloidal superballs, and thus the phase behavior of such systems can be investigated experimentally.Comment: 33 pages, 14 figure

    Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications

    Full text link
    In the first part of this series of two papers, we proposed a theoretical formalism that enables one to model and categorize heterogeneous materials (media) via two-point correlation functions S2 and introduced an efficient heterogeneous-medium (re)construction algorithm called the "lattice-point" algorithm. Here we discuss the algorithmic details of the lattice-point procedure and an algorithm modification using surface optimization to further speed up the (re)construction process. The importance of the error tolerance, which indicates to what accuracy the media are (re)constructed, is also emphasized and discussed. We apply the algorithm to generate three-dimensional digitized realizations of a Fontainebleau sandstone and a boron carbide/aluminum composite from the two- dimensional tomographic images of their slices through the materials. To ascertain whether the information contained in S2 is sufficient to capture the salient structural features, we compute the two-point cluster functions of the media, which are superior signatures of the micro-structure because they incorporate the connectedness information. We also study the reconstruction of a binary laser-speckle pattern in two dimensions, in which the algorithm fails to reproduce the pattern accurately. We conclude that in general reconstructions using S2 only work well for heterogeneous materials with single-scale structures. However, two-point information via S2 is not sufficient to accurately model multi-scale media. Moreover, we construct realizations of hypothetical materials with desired structural characteristics obtained by manipulating their two-point correlation functions.Comment: 35 pages, 19 figure
    corecore