6 research outputs found

    The Influence of CO2 Admixtures on Process in Titan's Atmospheric Chemistry

    Get PDF
    The exploration of planetary atmosphere is being advanced by the exciting results of the Cassin-Huygens mission to Titan. The complex chemistry revealed in such atmospheres leading to the synthesis of bigger molecules is providing new insights into our understanding of how life on Earth developed. In our experiments Titan's atmosphere is simulated in a glow discharge formed from a mixture of N2:CH4:CO2 gas. Samples of the discharge gas were analysed by GC-MS and FTIR. The major products identified in spectra were: hydrogen cyanide, acetylene and acetonitrile. The same compounds were detected in the FTIR: hydrogen cyanide, acetylene and ammonia. Whilst many of these compounds have been predicted and/or observed in the Titan atmosphere, the present plasma experiments provide evidence of both the chemical complexity of Titan atmospheric processes and the mechanisms by which larger species grow prior to form the dust that should cover much of the Titan's surface

    Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    Get PDF
    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules

    The influence of admixtures on the composition of products by nitrogen-methane atmospheric glow discharge

    Get PDF
    This work extends our experimentally studies with simulation of Titan's atmosphere by atmospheric glow discharge. This work is devoted to estimate the influence of CO2 and/or CO on reactivity in the Titan's atmosphere. The exploration of planetary atmosphere is being advanced by the exciting results of the Cassin-Huygens mission to Saturn and Titan, its most famous moon. Most of the studies were mainly interested in the reactivity of the N2-CH4 gaseous mixture and with the primary products of reactions, but the atmosphere of Titan also contains oxygenated volatile species

    Gas Chromatography Analysis of Discharge Products in N2‐CH4 Gas Mixture at Atmospheric Pressure: Study of Mimic Titan's Atmosphere

    Full text link
    In this paper, we report presence of various organic products formed in a flowing atmospheric glow discharge fed by gas mixture containing 1-5 % of methane in nitrogen, which mimics the Titan's atmosphere. Gaseous products from the discharge exhaust were analysed by Gas Chromatography with Mass Spectrometry (GC-MS). The experimental results revealed C2H2, HCN, and CH3CN as the major products. Various hydrocarbons and nitriles were the other determined gaseous products. Whilst many of these compounds have been predicted and/or observed in the Titan atmosphere, the present plasma experiments provide evidence of both the chemical complexity of Titan atmospheric processes and the mechanisms by which larger species grow prior to form the dust that should cover much of the Titan's surface
    corecore