90 research outputs found

    Functional interleukin-7 receptors (IL-7Rs) are expressed by marrow stromal cells: binding of IL-7 increases levels of IL-6 mRNA and secreted protein.

    Get PDF
    DNA spotted microarrays were used to compare gene expression profiles from 2 functionally distinct human marrow stromal cell lines: HS-27a, which supports cobblestone area formation by early hematopoietic progenitors, and HS-5, which secretes multiple cytokines that support the proliferation of committed progenitors. One unexpected result was the high level of interleukin-7 receptor (IL-7R) gene expression in HS-27a stromal cells. Northern blot analysis confirmed the IL-7R RNA expression, and Western blots for the IL-7R protein detected both a full-length (90-kd) IL-7R and a smaller 30-kd fragment in both HS-27a cells and primary stromal cell cultures, whereas only the 90-kd receptor protein was detected in peripheral blood mononuclear cells. Biotinylated IL-7 was shown to bind to HS-27a cells under physiologic conditions, and this binding was inhibited by blocking anti-IL-7 antibodies. Tyrosine phosphorylation of several proteins (55 kd, 30 kd, and 24 kd) in HS-27a cells was rapidly increased after incubation with recombinant IL-7. One of the phosphorylated proteins proved to be the 30-kd IL-7R fragment. Exposure of HS-27a cells to IL-7 resulted in a 10-fold increase in secretion of IL-6 into culture supernatants but no increase in the cytokines stromal cell-derived factor 1, macrophage inflammatory protein 1 alpha, or IL-1 beta. The up-regulation of IL-6 secretion is associated with a rapid but transient increase in detectable levels of IL-6 messenger RNA. These data suggest that IL-7 may function to regulate the milieu of the microenvironment by modulating IL-6 secretion by the IL-7R-expressing stromal elements

    Marrow Stromal Cell Infusion Rescues Hematopoiesis in Lethally Irradiated Mice despite Rapid Clearance after Infusion

    Get PDF
    Marrow stromal cells (MSCs, also termed mesenchymal stem cells) have been proposed as a promising cellular therapy for tissue injury including radiation-induced marrow failure, but evidence for a direct effect is lacking. To assess the effects of MSCs on survival after lethal irradiation, we infused syngeneic MSCs (either as immortalized MSCs clones or primary MSCs) intravenously into wild-type C57/Bl6 mice within 24 hours of lethal total body irradiation (TBI). Mice receiving either of the MSC preparations had significantly improved survival when compared to controls. In vivo imaging, immune histochemistry, and RT-PCR employed to detect MSCs indicated that the infused MSCs were predominantly localized to the lungs and rapidly cleared following infusion. Our results suggest that a single infusion of MSCs can improve survival after otherwise lethal TBI but the effect is not due to a direct interaction with, or contribution to, the damaged marrow by MSCs

    Ex vivo expansion of immature 4-hydroperoxycyclophosphamide-resistant progenitor cells from G-CSF-mobilized peripheral blood

    Get PDF
    AbstractThe application of ex vivo expansion to cell products pharmacologically purged in vitro may provide sufficient numbers of cells for rapid engraftment in a product with reduced tumor burden. To pursue this possibility we evaluated the effect of 4-hydroperoxycyclophosphamide (4-HC) treatment on granulocyte colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSC) and their subsequent expansion potential. A small number of G-PBSC CD34+ cells are resistant to 4-HC and are phenotypically and functionally immature. 4-HC-resistant G-PBSC cells are CD34+ bright, CD38+/-, DR(lo), CD13(lo), CD33-, CD71-, and rhodamine dull. In six experiments, treating G-PBSC with 60 microg/mL of 4-HC at 37 degrees C for 30 minutes reduced the number of colony-forming units (CFUs) per 5000 CD34+ cells by 96.3% (from 1333 +/- 137 to 46.5 +/- 11). This purging also reduced the frequency of 5-week long-term culture initiating cells (LTC-ICs) from 1/39 (range 1/27 to 1/62) to <1/1680 (range 1/1180 to 1/2420). Ex vivo expansion cultures were used to compare the proliferative potential of treated and untreated CD34+ cells. These cells were cultured with either the HS-5 stromal cell line serum-deprived conditioned media supplemented with 10 ng/mL kit ligand (HS-5CM/KL) or a recombinant growth factor mix (GFmix) containing 10 ng/mL each of interleukin (IL)-1, IL-3, IL-6, KL, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and 3 U/mL of erythropoietin. Culturing untreated CD34+ G-PBSC with 10% HS-5CM/KL increased total nucleated cells by 460-fold after 15 days. Progenitors, which were measured as CFUs, also increased by 47-fold over the same period. More significantly, culturing the 4-HC-treated CD34+ cells with HS-5/KL increased CFUs 98-fold and the nucleated cells increased 4573-fold. The absolute number of CFUs present after expansion of the 4-HC-resistant cells with HS-5CM/KL was threefold higher than that detected before purging and significantly higher than that obtained with GFmix. These data indicate that G-PBSC contain a very immature pool of cells not detectable using the 5-week LTC-IC assay, but have extremely high proliferative potential. Additionally, pharmacological purging of G-PBSC greatly reduces mature cells while retaining an immature population. Also significant is the finding that supernatant from the HS-5 bone marrow stromal cell line plus KL can fully regenerate progenitors from the 4-HC-resistant CD34+ G-PBSC.Biol Blood Marrow Transplant 1998;4(2):61-8

    G-CSF-mobilized peripheral blood mononuclear cells added to marrow facilitates engraftment in nonmyeloablated canine recipients: CD3 cells are required

    Get PDF
    AbstractStable mixed donor/host hematopoietic chimerism can be uniformly established in dogs conditioned with 200 cGy TBI before dog leukocyte antigen (DLA)-identical marrow transplantation and immunosuppressed with a short course of mycophenolate mofetil (MMF) and cyclosporine (CSP) after the transplantation. A further decrease in the TBI dose to 100 cGy or the elimination of MMF in this model results in graft rejection. Here we asked whetherthe addition of G-CSF-mobilized peripheral blood mononuclear cells (G-PBMC) to marrow grafts would enhance donor engraftment in dogs conditioned with 100 cGy TBI and given postgrafting immunosuppression with CSP alone. Using this model, 7 of 9 dogs given only marrow cells rejected their grafts within 8 to 17 weeks after transplantation. In contrast, the addition of unmodified G-PBMC to marrow grafts resulted in stable mixed donor/host chimerism in 5 of 8 dogs studied (P = .06). However, addition of the CD3-depleted fraction of G-PBMC, which contained both CD34 cells and CD14 cells, resulted in engraftment in only 1 of 7 recipients. We conclude that adding G-PBMC to marrow grafts replaced the requirement of MMF and 100 cGy of TBI, and that CD3 cells were required to facilitate engraftment of marrow cells in DLA-identical recipients, whereas the additional CD34 cells present in G-PBMC were not sufficient for this effect.Biol Blood Marrow Transplant 2001;7(11):613-9

    Mesenchymal Stromal Cells Fail to Prevent Acute Graft-versus-Host Disease and Graft Rejection after Dog Leukocyte Antigen-Haploidentical Bone Marrow Transplantation

    Get PDF
    Mesenchymal stromal cells (MSCs) have been shown to have immunosuppressive effects in vitro. To test the hypothesis that these effects can be harnessed to prevent graft-versus-host disease (GVHD) and graft rejection after hematopoietic cell transplantation (HCT), we administered a combination of 3 different immortalized marrow-derived MSC lines (15-30 × 106 MSCs/kg/day, 2-5 times/week) or third-party primary MSC (1.0 × 106 MSCs/kg/day, 3 times/week) to canine recipients (n = 15) of dog leukocyte antigen–haploidentical marrow grafts prepared with 9.2 Gy of total body irradiation. Additional pharmacological immunosuppression was not given after HCT. Before their in vivo use, the MSC products were shown to suppress alloantigen-induced T cell proliferation in a dose-dependent, major histocompatibility complex–unrestricted, and cell contact–independent fashion in vitro. Among 14 evaluable dogs, 7 (50%) rejected their grafts and 7 engrafted, with ensuing rapidly fatal acute GVHD (50%). These observations were not statistically different from outcomes obtained with historical controls (n = 11) not given MSC infusions (P = .69). Thus, survival curves for MSC-treated dogs and controls were virtually superimposable (median survival, 18 vs 15 days, respectively). Finally, outcomes of dogs given primary MSCs (n = 3) did not appear to be different from those given clonal MSCs (n = 12). In conclusion, our data fail to demonstrate MSC-mediated protection against GVHD and allograft rejection in this model

    HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney

    Get PDF
    HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Studies assessing mechanisms of proximal tubular cell (PTC) physiology and pathophysiology increasingly utilize cell culture systems to avoid the complexity of whole organ/whole animal experiments. However, no well-differentiated PTC line derived from adult human kidney currently exists. Therefore, the goal of this research was to establish such a line by transduction with human papilloma virus (HPV 16) E6/E7 genes. A primary PTC culture from normal adult human renal cortex was exposed to a recombinant retrovirus containing the HPV 16 E6/E7 genes, resulting in a cell line designated HK-2 (human kidney-2) which has grown continuously in serum free media for more than one year. HK-2 cell growth is epidermal growth factor dependent and the cells retain a phenotype indicative of well-differentiated PTCs (positive for alkaline phosphatase, gamma glutamyltranspeptidase, leucine aminopeptidase, acid phosphatase, cytokeratin, α3β1 integrin, fibronectin; negative for factor VHI-related antigen, 6.19 antigen and CALLA endopeptidase). Furthermore, HK-2 cells retain functional characteristics of proximal tubular epithelium (Na+ dependent/phlorizin sensitive sugar transport; adenylate cyclase responsiveness to parathyroid, but not to antidiuretic, hormone). The E6/E7 genes are present in the HK-2 genome, as determined by PCR. To assess its potential usefulness as a tool for studying injury and repair, HK-2 cells were exposed to a toxic concentration of H2O2 ± iron chelation (deferoxamine) or hydroxyl radical scavenger (Na benzoate) therapy. Only the former blocked H2O2 cytotoxicity, reproducing results previously obtained with freshly isolated rat proximal tubular segments. In conclusion, an immortalized adult human PTC line has been established by transduction with HPV 16 E6/E7 genes. It appears to be well-differentiated on the basis of its histochemical, immune cytochemical, and functional characteristics, and it can reproduce experimental results obtained with freshly isolated PTCs. Thus, this new PTC line could have substantial research application

    Pharmacological Immunosuppression Reduces But Does Not Eliminate the Need for Total-Body Irradiation in Nonmyeloablative Conditioning Regimens for Hematopoietic Cell Transplantation

    Get PDF
    In the dog leukocyte antigen (DLA)-identical hematopoietic cell transplantation (HCT) model, stable marrow engraftment can be achieved with total-body irradiation (TBI) of 200 cGy when used in combination with postgrafting immunosuppression. The TBI dose can be reduced to 100 cGy without compromising engraftment rates if granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (G-PBMC) are infused with the marrow. T cell-depleting the G-PBMC product abrogates this effect. These results were interpreted to suggest that the additional T cells provided with G-PBMC facilitated engraftment by overcoming host resistance. We therefore hypothesized that the TBI dose may be further reduced to 50 cGy by augmenting immunosupression either by (1) tolerizing or killing recipient T cells, or (2) enhancing the graft-versus-host (GVH) activity of donor T cells. To test the first hypothesis, recipient T cells were activated before HCT by repetitive donor-specific PBMC infusions followed by administration of methotrexate (MTX) (n = 5), CTLA4-Ig (n = 4), denileukin diftitox (Ontak; n = 4), CTLA4-Ig + MTX (n = 8), or 5c8 antibody (anti-CD154) + MTX (n = 3). To test the second hypothesis, recipient dendritic cells were expanded in vivo by infusion of Flt3 ligand given either pre-HCT (n = 4) or pre- and post-HCT (n = 5) to augment GVH reactions. Although all dogs showed initial allogeneic engraftment, sustained engraftment was seen in only 6 of 42 dogs (14% of all dogs treated in 9 experimental groups). Hence, unless more innovative pharmacotherapy can be developed that more forcefully shifts the immunologic balance in favor of the donor, noncytotoxic immunosuppressive drug therapy as the sole component of HCT preparative regimens may not suffice to ensure sustained engraftment
    • …
    corecore