4 research outputs found

    SYSTEMATICS AND EVOLUTION IN THE TRIBE SCHIZOPETALAE (BRASSICACEAE): A MOLECULAR, MORPHOLOGICAL, AND ECOLOGICAL ANALYSIS OF THE DIVERSIFICATION OF AN ENDEMIC LINEAGE FROM THE ATACAMA DESERT (CHILE)

    Get PDF
    As aridity has been identified as an active promoter of diversification in deserts, attempts to test organismal differentiation in the Atacama Desert have resulted particularly challenging. Most limitations are related to the recent origin of the extreme aridity in the Atacama Desert, which have stimulated a rapid process of diversification and obscured evidence of interspecific divergence. Based on its favorable biological attributes and high endemicity, genera from the tribe Schizopetalae (Mathewsia and Schizopetalon) emerge as a practical study group to conduct studies of diversification under rapid and recent diversification. The present dissertation focuses on exploring this issue, 1) solving the phylogenetic relationships in the tribe Schizopetalae, 2) describing patterns of interspecific divergence in a well-defined lineage of Schizopetalon from the Atacama Desert, and 3) searching and testing multiple highly variable nuclear loci for phylogenetic and phylogeographic purposes. The results confirmed the monophyletic status of the tribe Schizopetalae and genus Schizopetalon; nevertheless, genus Mathewsia requires to be redefined because the exclusion of M. nivea. Patterns of interspecific differentiation suggest a process of allopatric divergence promoted by ecological niche differentiation between the Andes and coastal ranges in the Atacama Desert. While this result is consistent with previous hypotheses of divergence by habitat differentiation, elements of hybridization, incomplete lineage sorting, and phenotypic plasticity obscured the identification of species limits and precluded a better inference of lineage isolation. The analysis of available genomic resources demonstrated the suitability of obtaining multiple low copy nuclear loci from already available genomic data in Schizopetalon. However, the use of these markers is yet limited, as the detection of multiple copies implies that further analyses are needed to discard paralogous copies. Overall, this dissertation sets the foundation for more elaborated studies, as more available genomic resources and intricate pattern of divergence can result promising to explore the consequences of local patterns of extreme aridity in the diversification and evolution of species of Schizopetalae

    Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset

    No full text
    Abstract: The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore