8,018 research outputs found

    Probing the momentum dependence of medium modifications of the nucleon-nucleon elastic cross sections

    Full text link
    The momentum dependence of the medium modifications on nucleon-nucleon elastic cross sections is discussed with microscopic transport theories and numerically investigated with an updated UrQMD microscopic transport model. The semi-peripheral Au+Au reaction at beam energy Eb=400AE_b=400A MeV is adopted as an example. It is found that the uncertainties of the momentum dependence on medium modifications of cross sections influence the yields of free nucleons and their collective flows as functions of their transverse momentum and rapidity. Among these observables, the elliptic flow is sensitively dependent on detailed forms of the momentum dependence and more attention should be paid. The elliptic flow is hardly influenced by the probable splitting effect of the neutron-neutron and proton-proton cross sections so that one might pin down the mass splitting effect of the mean-field level at high beam energies and high nuclear densities by exploring the elliptic flow of nucleons or light clusters.Comment: 13 pages, 6 figures, 1 tabl

    Scalings of Elliptic Flow for a Fluid at Finite Shear Viscosity

    Get PDF
    Within a parton cascade approach we investigate the scaling of the differential elliptic flow v2(pT)v_2(p_T) with eccentricity ϵx\epsilon_x and system size and its sensitivity to finite shear viscosity. We present calculations for shear viscosity to entropy density ratio η/s\eta/s in the range from 1/4π1/4\pi up to 1/π1/\pi, finding that the v2v_2 saturation value varies by about a factor 2. Scaling of v2(pT)/ϵxv_2(p_T)/\epsilon_x is seen also for finite η/s\eta/s which indicates that it does not prove a perfect hydrodynamical behavior, but is compatible with a plasma at finite η/s\eta/s. Introducing a suitable freeze-out condition, we see a significant reduction of v2(pT)v_2(p_T) especially at intermediate pTp_T and for more peripheral collisions. This causes a breaking of the scaling for both v2(pT)v_2(p_T) and the pT−p_T-averaged v2v_2, while keeping the scaling of v_2(p_T)/\la v_2\ra. This is in better agreement with the experimental observations and shows as a first indication that the η/s\eta/s should be significantly lower than the pQCD estimates. We finally point out the necessity to include the hadronization via coalescence for a definite evaluation of η/s\eta/s from intermediate pTp_T data.Comment: 5 pages, 5 figures. Two points in fig.4 has been change

    Anisotropies in momentum space at finite Shear Viscosity in ultrarelativistic heavy-ion collisions

    Full text link
    Within a parton cascade we investigate the dependence of anisotropies in momentum space, namely the elliptic flow v2=v_2= and the v4=v_4=, on both the finite shear viscosity η\eta and the freeze-out (f.o.) dynamics at the RHIC energy of 200 AGeV. In particular it is discussed the impact of the f.o. dynamics looking at two different procedures: switching-off the collisions when the energy density goes below a fixed value or reducing the cross section according to the increase in η/s\eta/s from a QGP phase to a hadronic one. We address the relation between the scaling of v2(pT)v_2(p_T) with the eccentricity ϵx\epsilon_x and with the integrated elliptic flow. We show that the breaking of the v2(pT)/ϵxv_2(p_T)/\epsilon_x scaling is not coming mainly from the finite η/s\eta/s but from the f.o. dynamics and that the v2(pT)v_2(p_T) is weakly dependent on the f.o. scheme. On the other hand the v4(pT)v_4(p_T) is found to be much more dependent on both the η/s\eta/s and the f.o. dynamics and hence is indicated to put better constraints on the properties of the QGP. A first semi-quantitative analysis show that both v2v_2 and v4v_4 (with the smooth f.o.) consistently indicate a plasma with 4πη/s∼1−24\pi \eta/s \sim 1-2.Comment: 7 pages. Proceedings of the International School of Nuclear Physics in Erice, Sicily, to appear in Progress in Particle and Nuclear Physic

    Numerical simulation of liquid sloshing in a partially filled container with inclusion of compressibility effects

    No full text
    A numerical scheme of study is developed to model compressible two-fluid flows simulating liquid sloshing in a partially filled tank. For a two-fluid system separated by an interface as in the case of sloshing, not only a Mach-uniform scheme is required, but also an effective way to eliminate unphysical numerical oscillations near the interface. By introducing a preconditioner, the governing equations expressed in terms of primitive variables are solved for both fluids (i.e. water, air, gas etc.) in a unified manner. In order to keep the interface sharp and to eliminate unphysical numerical oscillations in unsteady fluid flows, the non-conservative implicit Split Coefficient Matrix Method (SCMM) is modified to construct a flux difference splitting scheme in the dual time formulation. The proposed numerical model is evaluated by comparisons between numerical results and measured data for sloshing in an 80% filled rectangular tank excited at resonance frequency. Through similar comparisons, the investigation is further extended by examining sloshing flows excited by forced sway motions in two different rectangular tanks with 20% and 83% filling ratios. These examples demonstrate that the proposed method is suitable to capture induced free surface waves and to evaluate sloshing pressure loads acting on the tank walls and ceiling

    Does the NJL chiral phase transition affect the elliptic flow of a fluid at fixed η/s\eta/s?

    Get PDF
    We have derived and solved numerically the Boltzmann-Vlasov transport equations that includes both two-body collisions and the chiral phase transition by mean of NJL-field dynamics. The scope is to understand if the field dynamics supply new genuine effects on the build-up of the elliptic flow v2v_2, a measure of the asymmetry in the momentum space, and in particular if it can affect the relation between v2v_2 and the shear viscosity to entropy ratio η/s\eta/s. Solving the transport equation with a constant cross section for the condition of Au+AuAu+Au collisions at sNN=200\sqrt{s_{NN}}=200 AGeV it is shown a sizable suppression of v2v_2 due to the attractive nature of the field dynamics that generates the constituent mass. However the key result is that if η/s\eta/s of the system is kept fixed by an appropriate local renormalization of the cross section the v2v_2 does not depend on the details of the collisional and/or field dynamics and in particular it is not affected significantly by the chiral phase transition.Comment: 5 pages, 5 figure

    Fast nucleon emission as a probe of the isospin momentum dependence

    Full text link
    In this article we investigate the structure of the non-local part of the symmetry term, that leads to a splitting of the effective masses of protons and neutrons in asymmetric matter. Based on microscopic transport simulations we suggest some rather sensitive observables in collisions of neutron-rich (unstable) ions at intermediate (RIARIA) energies. In particular we focus the attention on pre-equilibrium nucleon emissions. We discuss interesting correlations between the N/Z content of the fast emitted particles and their rapidity or transverse momentum, that show a nice dependence on the prescription used for the effective mass splitting.Comment: 5 pages, 6 figures, revtex

    Uncertainty Estimates and Prediction Interval Development for Internal Strain Gage Balance Calibration Systems

    Get PDF
    Currently, there is a lack of the use of mathematically rigorous methods to evaluate the performance of multivariate force measurement systems. The specific problem addressed in the research stems from the practical issues faced by test engineers when wind tunnel models with internal strain gage balances are readied for test. Check loads are applied and the question that needs to be answered is whether or not the balance is reading within acceptable limits. These systems tend to be difficult to characterize uncertainty, primarily due to their multivariate nature, but also due to the desire for an estimate on the explanatory variable of the system, instead of the response. This estimation of the explanatory variable is inherent to the calibration problem. For systems that are modeled using non-linear terms, no closed form solution will exist for the explanatory variable. This research details the development of a prediction interval which includes the measurement error in the calibration and check systems. The 20,000 lb. manual stand for calibrating balances used in the National Transonic Facility (NTF) is employed by NASA Langley Research Center and the case study for the work. The uncertainty estimates were developed using the propagation of error method on derived physics equations for the system. The uncertainty estimates were integrated into the developed prediction interval, which demonstrated a capture rate of 96% for a trial set of check loads using a 95% level of condence. Comparisons are made to prediction interval capture rates for the Single Vector System using a common set of check loads on an NTF balance
    • …
    corecore