71 research outputs found

    Dynamics of the entanglement spectrum in spin chains

    Full text link
    We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.Comment: 16 pages, 8 figures, comments are welcome! Version published in JSTAT special issue on "Quantum Entanglement In Condensed Matter Physics

    Integrating Neural Networks with a Quantum Simulator for State Reconstruction

    Get PDF
    We demonstrate quantum many-body state reconstruction from experimental data generated by a programmable quantum simulator, by means of a neural network model incorporating known experimental errors. Specifically, we extract restricted Boltzmann machine (RBM) wavefunctions from data produced by a Rydberg quantum simulator with eight and nine atoms in a single measurement basis, and apply a novel regularization technique to mitigate the effects of measurement errors in the training data. Reconstructions of modest complexity are able to capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated observables such as the R\'enyi mutual information. Our results open the door to integration of machine learning architectures with intermediate-scale quantum hardware.Comment: 15 pages, 13 figure

    Violation of Bell's inequalities with preamplified homodyne detection

    Get PDF
    We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical states of bosonic systems

    Three-Dimensional Automated, Machine-Learning-Based Left Heart Chamber Metrics: Associations with Prevalent Vascular Risk Factors and Cardiovascular Diseases

    Get PDF
    Background. Three-dimensional transthoracic echocardiography (3DE) powered by artificial intelligence provides accurate left chamber quantification in good accordance with cardiac magnetic resonance and has the potential to revolutionize our clinical practice. Aims. To evaluate the association and the independent value of dynamic heart model (DHM)-derived left atrial (LA) and left ventricular (LV) metrics with prevalent vascular risk factors (VRFs) and cardiovascular diseases (CVDs) in a large, unselected population. Materials and Methods. We estimated the association of DHM metrics with VRFs (hypertension, diabetes) and CVDs (atrial fibrillation, stroke, ischemic heart disease, cardiomyopathies, >moderate valvular heart disease/prosthesis), stratified by prevalent disease status: participants without VRFs or CVDs (healthy), with at least one VRFs but without CVDs, and with at least one CVDs. Results. We retrospectively included 1069 subjects (median age 62 [IQR 49–74]; 50.6% women). When comparing VRFs with the healthy, significant difference in maximum and minimum indexed atrial volume (LAVi max and LAVi min), left atrial ejection fraction (LAEF), left ventricular mass/left ventricular end-diastolic volume ratio, and left ventricular global function index (LVGFI) were recorded (p < 0.05). In the adjusted logistic regression, LAVi min, LAEF, LV ejection fraction, and LVGFI showed the most robust association (OR 3.03 [95% CI 2.48–3.70], 0.45 [95% CI 0.39–0.51], 0.28 [95% CI 0.22–0.35], and 0.22 [95% CI 0.16–0.28], respectively, with CVDs. Conclusions. The present data suggested that novel 3DE left heart chamber metrics by DHM such as LAEF, LAVi min, and LVGFI can refine our echocardiographic disease discrimination capacity
    • …
    corecore