612 research outputs found

    New Strategies in the Design of Paramagnetic CAs

    Get PDF
    Nowadays, magnetic resonance imaging (MRI) is the first diagnostic imaging modality for numerous indications able to provide anatomical information with high spatial resolution through the use of magnetic fields and gradients. Indeed, thanks to the characteristic relaxation time of each tissue, it is possible to distinguish between healthy and pathological ones. However, the need to have brighter images to increase differences and catch important diagnostic details has led to the use of contrast agents (CAs). Among them, Gadolinium-based CAs (Gd-CAs) are routinely used in clinical MRI practice. During these last years, FDA highlighted many risks related to the use of Gd-CAs such as nephrotoxicity, heavy allergic effects, and, recently, about the deposition within the brain. These alerts opened a debate about the opportunity to formulate Gd-CAs in a different way but also to the use of alternative and safer compounds to be administered, such as manganese- (Mn-) based agents. In this review, the physical principle behind the role of relaxivity and the T1 boosting will be described in terms of characteristic correlation times and inner and outer spheres. Then, the recent advances in the entrapment of Gd-CAs within nanostructures will be analyzed in terms of relaxivity boosting obtained without the chemical modification of CAs as approved in the chemical practice. Finally, a critical evaluation of the use of manganese-based CAs will be illustrated as an alternative ion to Gd due to its excellent properties and endogenous elimination pathway

    Glycosaminoglycans and contrast agents: The role of hyaluronic acid as MRI contrast enhancer

    Get PDF
    A comprehensive understanding of the behaviour of Glycosaminoglycans (GAGs) combined with imaging or therapeutic agents can be a key factor for the rational design of drug delivery and diagnostic systems. In this work, physical and thermodynamic phenomena arising from the complex interplay between GAGs and contrast agents for Magnetic Resonance Imaging (MRI) have been explored. Being an excellent candidate for drug delivery and diagnostic systems, Hyaluronic acid (HA) (0.1 to 0.7%w/v) has been chosen as a GAG model, and Gd-DTPA (0.01 to 0.2 mM) as a relevant MRI contrast agent. HA samples crosslinked with divinyl sulfone (DVS) have also been investigated. Water Diffusion and Isothermal Titration Calorimetry studies demonstrated that the interaction between HA and Gd-DTPA can form hydrogen bonds and coordinate water molecules, which plays a leading role in determining both the polymer conformation and the relaxometric properties of the contrast agent. This interaction can be modulated by changing the GAG/contrast agent molar ratio and by acting on the organization of the polymer network. The fine control over the combination of GAGs and imaging agents could represent an enormous advantage in formulating novel multifunctional diagnostic probes paving the way for precision nanomedicine tools
    • …
    corecore