180 research outputs found

    Heat and Mass Transfer in Fires: Scaling Laws and their Application

    Get PDF
    Fire is a phenomenon that covers a multiplicity of scales depending on the different processes involved. Length scales range from the nanometres when addressing material flammability to the kilometres when dealing with forest fires, while time scales cover a broad spectrum too. Heating of structural elements can be measured in hours while characteristic chemical times for reactions do not exceed the millisecond. Despite these wide ranges, a series of simple scaling laws seem to describe well a multiplicity of processes associated to fire. In this review some of those laws will be presented covering a wide range of events, from ignition to compartment fires and global building behaviour. Different non-dimensional parameters will be generated and placed in the context of heir engineering applications

    The Risk Imposed by Fire to Buildings and How to Address It

    Get PDF
    The history of fire science originates in the desire to enhance destruction of infrastructure by means of fire. Many of the basic principles of fire growth and the behaviour of structures in fire were developed within the context of an organized and deliberate attempt to use fire as a tool for urban destruction. Buildings are inherently vulnerable to fire due to their use, thus they have to be designed with the objective of minimizing the probability of fire occurrence and of damage potential. Nevertheless, the design criteria rely mostly on scenarios that are considered to be consistent with the building use. Within the design process there is no consideration to premeditated fires or those corresponding to a strategy for destruction. Furthermore, generally design is done in a prescriptive manner and thus is framed by rules and regulations that do not provide an estimate of performance. Only a detailed understanding of the performance of a building or structure in the event of a fire can allow estimating and understanding its vulnerabilities and can result in a strategy to minimize the impact of fire as a tool for terrorism

    Scaling-up experiments of smouldering combustion as a remediation technology for contaminated soil

    Get PDF
    Self-sustaining Treatment for Active Remediation (STAR) is a novel, patent-pending process that uses smouldering combustion as a remediation technology for land contaminated with hazardous organic liquids. Compounds such as chlorinated solvents, coal tar and petroleum products, called Non-Aqueous Phase Liquids (NAPLs) for their low miscibility with water, have a long history of use in the industrialised world and are among the most ubiquitous of contaminants worldwide. These contaminants are toxic and many are suspected or known carcinogens. Existing remediation technologies are expensive and ineffective at reducing NAPL source zones sufficiently to restore affected water resources to appropriate quality levels. STAR introduces a self-sustaining smouldering reaction within the NAPL pool in the subsurface and allows that reaction to provide all of the post-ignition energy required by the reaction to completely remediate the NAPL source zone in the soil. Results from laboratory and field experiments have been very promising. Laboratory experiments have demonstrated STAR across a wide range of NAPL fuels and focused on coal tar to identify key parameters for successful remediation. Modelling has suggested that STAR efficiency will improve with scale as effects such as heat losses from boundaries become less significant. Observations from field experiments support the modelling theory - significantly lower relative air flow in a smouldering field experiment (330L) led to faster smouldering front propagation than observed in laboratory experiments (1L and 3L). Preliminary emissions monitoring by Fourier Transform Infrared (FTIR) spectroscopy has suggested that STAR emissions might be low enough to meet regulatory requirements, but further study is necessary. As emissions are expected to vary with each contaminant, activated carbon filters are being developed and tested in case emissions filtration is necessary. Experiments at all scales have demonstrated that STAR is controllable and self-terminating. Pilot-scale (2500L) field trials are underway to demonstrate STAR on excavated contaminated soil. The materials that will be studied in these trials are manufactured coal tar in coarse sand (which is the same material as used in the laboratory and field experiments) as well as two soils obtained from coal tar contaminated sites. This poster focuses on the scale-up to these field trials, including small scale characterisation, large scale performance, emissions monitoring and post-treatment soil analysis

    Material Properties that Control Ignition and Spread of a Fire in Micro-Gravity Environments

    Get PDF
    A study of the different mechanisms controlling the initial stages of a fire in a micro-gravity environment is presented. Three different processes are deemed important for evaluation of material flammability, piloted ignition, co-current and counter-current flame spread. The three processes are evaluated in terms of thermal theory and the different material properties controlling these combustion processes are extracted. Experimental results obtained from ground testing, drop towers, parabolic flights and sounding rocket experiments serve to validate the present approach

    Smoldering - The Fire Scenario

    Get PDF
    Technical Report written while the author, Prof Torero, was a faculty member of the University of Maryland in 2000.There are certain fire initiation scenarios that are particularly common, one of great significance is a fire initiated from the ignition of a porous fuel. Nearly 40% of the deaths due to fire can be traced to cigarette induced smolder of upholstered furniture and the mechanisms that control the process that transforms the weak smolder reaction occurring in the cigarette to a fire are still mostly unknown. A general description of this fire scenario and a discussion of its threats is provided here

    Buoyancy Effects on Smoldering of Polyurethane Foam

    Get PDF
    An experimental study has been carried out to investigate the effects of buoyancy on smoldering of polyurethane foam. The experiments are conducted with a high void fraction flexible polyurethane foam as fuel and air as oxidizer, in a geometry that approximately produces a one dimensional smolder propagation. The potential effect of buoyancy in the process is analyzed by comparing upward and downward smolder propagation through a series of normal gravity and variable gravity experiments. Both opposed and forward mixed (free and forced) flow smolder configurations are studied. In opposed smolder the oxidizer flow opposes the direction of smolder propagation, and in forward smolder both move in the same direction. Variable gravity free flow tests are also conducted in an aircraft flying a parabolic trajectories that provides low gravity periods of up to 25 sec. Measurements are performed of the smolder reaction propagation velocity and temperature as a function of the location in the sample interior, the foam and air initial temperature, the direction of propagation and the air flow velocity. This information is used in conjunction with previously developed smolder theoretical models to determine the smolder controlling mechanisms and the effect of gravity. Three zones in the fuel sample with clearly defined smolder characteristics are identified. A zone close to the igniter where smolder is affected by the external heat, a zone at the end of the sample where smolder is affected by the environment, and a zone at the end of the sample where smolder is affected by the environment, and a zone, in the middle of the foam, that is free from external effects. This last zone is the most characteristic of one dimensional, self-supported smolder, and the one that is studied in greater detail. In mixed flow convection buoyancy induced flows together with the forced flow are the primary mechanism of oxidizer transport to the reaction zone, while diffusion has a secondary importance. In natural convection, downward smoldering is of the opposed type while upward smoldering resembles more the forward type. For opposed flow smoldering, both natural and forced, the smolder propagation velocity is found to increase with the oxidizer mass flux reaching the reaction zone. This result confirms predictions from previously developed theoretical models that the smolder velocity is proportional to the oxygen mass flow. The experimental data is correlated in terms of a non-dimensional smolder velocity derived from these models, the results show very good agreement between theory and experiments for strong smolder. To implement the models, an analysis of the gas flow field is developed where the effect of significantly different permeabilities between char and foam is been Extinction is observed for very low and for very high flow rates, which shows that smolder is controlled by a sensitive competition between oxygen supply and heat losses to and from the reaction zone. Under these conditions the models do not describe the experiments well. The forward flow smolder experiments show that forward smoldering is controlled not only by the competition between oxygen supply and heat losses to and from the reaction zone but also by the competition between pyrolysis and oxidation. For low flow velocities a regime resembling the opposed flow is observed. As the air flow velocity is increased, foam pyrolysis followed by char oxidation is the controlling smolder mechanism. For both these conditions the theoretical models describe the experiments well. Increasing the flow velocity further results in a smolder propagation velocity controlled by total fuel consumption, in downward burining. For upward burning transition to flaming is observed for very high air flow velocities. This last regime is not well predicted by the theoretical models. The results from the experiments in variable gravity environment conducted in the KC-135A and Leajet airplanes confirm the normal gravity observations that the competition between heat losses and oxidizer transport is the major mechanism controlling smolder. The absence of convective flow in low gravity results in higher temperature in the unburnt fuel and char due to smaller heat losses to the surroundings. However, the oxidizer transport to the reaction zone also decreases and as a result the temperature at the reaction zone decreases indicating a weakening of the eaction, The presence of pyrolytic reactions in foward smolder and their capability to inhibit smoldering complicates the above described smolder mechanisms

    Experimental studies of self-sustaining thermal aquifer remediation (STAR) for non-aqueous phase liquid (NAPL) sources

    Get PDF
    Self-sustaining Thermal Aquifer Remediation (STAR) is a novel technology that employs smouldering combustion for the remediation of subsurface contamination by non-aqueous phase liquids (NAPLs). Smouldering is a form of combustion that is slower and less energetic than flaming combustion. Familiar examples of smouldering involve solid fuels that are destroyed by the reaction (e.g., a smouldering cigarette or peat smouldering after a wildfire). In STAR, the NAPL serves as the fuel within an inert, porous soil medium. Results from experiments across a range of scales are very promising. Detailed characterisation has focused on coal tar, a common denser-than-water NAPL (DNAPL) contaminant. Complete remediation is demonstrated across this range of scales. Visual observations are supported bychemical extraction results. Further experiments suggest that STAR can be self-sustaining, meaning that once ignited the process can supply its own energy to propagate. Costly energy input is reduced significantly. Comparison of large scale to small scale laboratory experiments, a volume increase by a factor of 100, suggests that STAR process efficiency increases with scale. This increase in efficiency results from reduced heat losses at larger scales while maximum the temperature achieved by STAR is unaffected. The research also demonstrates the controllability of STAR, where the termination of airflow to the reaction terminates the STAR process. The scale-up process provides important guidance to the development of full scale STAR for ex situ remediation of NAPL-contaminated soil

    Small-scale forward smouldering experiments for remediation of coal tar in inert media

    Get PDF
    This paper presents a series of experiments conducted to assess the potential of smouldering combustion as a novel technology for remediation of contaminated land by water-immiscible organic compounds. The results from a detailed study of the conditions under which a smouldering reaction propagates in sand embedded with coal tar are presented. The objective of the study is to provide further understanding of the governing mechanisms of smouldering combustion of liquids in porous media. A small-scale apparatus consisting of a 100 mm in diameter quartz cylinder arranged in an upward configuration was used for the experiments. Thermocouple measurements and visible digital imaging served to track and characterize the ignition and propagation of the smouldering reaction. These two diagnostics are combined here to provide valuable information on the development of the reaction front. Post-treatment analyses of the sand were used to assess the amount of coal tar remaining in the soil. Experiments explored a range of inlet airflows and fuel concentrations. The smouldering ignition of coal tar was achieved for all the conditions presented here and self-sustained propagation was established after the igniter was turned off. It was found that the combustion is oxygen limited and peak temperatures in the range 800-1080 °C were observed. The peak temperature increased with the airflow at the lower range of flows but decreased with airflow at the higher range of flows. Higher airflows were found to produce faster propagation. Higher fuel concentrations were found to produce higher peak temperatures and slower propagation. The measured mass removal of coal tar was above 99% for sand obtained from the core and 98% for sand in the periphery of the apparatus
    corecore