4 research outputs found

    Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study

    No full text
    With almost 638 million cases and over 6 million deaths worldwide, the SARS-CoV-2 pandemic represents an unprecedented healthcare challenge. Although the management and natural history of COVID-19 patients have changed after the introduction of active therapies and vaccination, the development of secondary infections complicates hospital stay. This is a single-center, retrospective, observational study that explores the incidence and microbiology of hospital-acquired infections (HAIs) in two subsequent populations of hospitalized patients with COVID-19. Demographic, pre-hospitalization baseline characteristics, therapeutic options and microbiology data about secondary infections were collected for a total of 1153 cases. The second population appeared to have a higher median age (73 vs. 63 years, respectively), comorbidities (median Charlson Comorbidity Index Score was 4 vs. 1, respectively) and incidence of secondary infections (23.5% vs. 8.2%) with respect to the first. A higher incidence of multi-drug resistant organisms (MDROs), including difficult-to-treat resistant (DTR) Pseudomonas, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), was also observed. Both patients’ characteristics and poor adherence to standard hygiene and infection control protocols may have contributed to the higher incidence of these events and may have impacted on the natural history of the disease. In-hospital mortality rates were similar, despite the introduction of active therapies against COVID-19 (24.7% vs. 23.5%, respectively). The incidence of HAIs may have contributed to the unchanged mortality and prompts for more effective antimicrobial stewardship and infection control procedures in COVID-19

    The long Pentraxin PTX3 serves as an early predictive biomarker of co-infections in COVID-19Research in context

    No full text
    Summary: Background: COVID-19 clinical course is highly variable and secondary infections contribute to COVID-19 complexity. Early detection of secondary infections is clinically relevant for patient outcome. Procalcitonin (PCT) and C-reactive protein (CRP) are the most used biomarkers of infections. Pentraxin 3 (PTX3) is an acute phase protein with promising performance as early biomarker in infections. In patients with COVID-19, PTX3 plasma concentrations at hospital admission are independent predictor of poor outcome. In this study, we assessed whether PTX3 contributes to early identification of co-infections during the course of COVID-19. Methods: We analyzed PTX3 levels in patients affected by COVID-19 with (n = 101) or without (n = 179) community or hospital-acquired fungal or bacterial secondary infections (CAIs or HAIs). Findings: PTX3 plasma concentrations at diagnosis of CAI or HAI were significantly higher than those in patients without secondary infections. Compared to PCT and CRP, the increase of PTX3 plasma levels was associated with the highest hazard ratio for CAIs and HAIs (aHR 11.68 and 24.90). In multivariable Cox regression analysis, PTX3 was also the most significant predictor of 28-days mortality or intensive care unit admission of patients with potential co-infections, faring more pronounced than CRP and PCT. Interpretation: PTX3 is a promising predictive biomarker for early identification and risk stratification of patients with COVID-19 and co-infections. Funding: Dolce & Gabbana fashion house donation; Ministero della Salute for COVID-19; EU funding within the MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT) and MUR PNRR Italian network of excellence for advanced diagnosis (Project no. PNC-E3-2022-23683266 PNC-HLS-DA); EU MSCA (project CORVOS 860044)
    corecore