136 research outputs found

    Stochastic mean field formulation of the dynamics of diluted neural networks

    Get PDF
    We consider pulse-coupled Leaky Integrate-and-Fire neural networks with randomly distributed synaptic couplings. This random dilution induces fluctuations in the evolution of the macroscopic variables and deterministic chaos at the microscopic level. Our main aim is to mimic the effect of the dilution as a noise source acting on the dynamics of a globally coupled non-chaotic system. Indeed, the evolution of a diluted neural network can be well approximated as a fully pulse coupled network, where each neuron is driven by a mean synaptic current plus additive noise. These terms represent the average and the fluctuations of the synaptic currents acting on the single neurons in the diluted system. The main microscopic and macroscopic dynamical features can be retrieved with this stochastic approximation. Furthermore, the microscopic stability of the diluted network can be also reproduced, as demonstrated from the almost coincidence of the measured Lyapunov exponents in the deterministic and stochastic cases for an ample range of system sizes. Our results strongly suggest that the fluctuations in the synaptic currents are responsible for the emergence of chaos in this class of pulse coupled networks.Comment: 12 Pages, 4 Figure

    Out-of-equilibrium versus dynamical and thermodynamical transitions for a model protein

    Full text link
    Equilibrium and out-of-equilibrium transitions of an off-lattice protein model have been identified and studied. In particular, the out-of-equilibrium dynamics of the protein undergoing mechanical unfolding is investigated, and by using a work fluctuation relation, the system free energy landscape is evaluated. Three different structural transitions are identified along the unfolding pathways. Furthermore, the reconstruction of the the free and potential energy profiles in terms of inherent structure formalism allows us to put in direct correspondence these transitions with the equilibrium thermal transitions relevant for protein folding/unfolding. Through the study of the fluctuations of the protein structure at different temperatures, we identify the dynamical transitions, related to configurational rearrangements of the protein, which are precursors of the thermal transitions.Comment: Proceedings of the "YKIS 2009 : Frontiers in Nonequilibrium Physics" conference in Kyoto, August 2009. To appear in Progress of Theoretical Physics Supplemen

    Collective chaos in pulse-coupled neural networks

    Get PDF
    We study the dynamics of two symmetrically coupled populations of identical leaky integrate-and-fire neurons characterized by an excitatory coupling. Upon varying the coupling strength, we find symmetry-breaking transitions that lead to the onset of various chimera states as well as to a new regime, where the two populations are characterized by a different degree of synchronization. Symmetric collective states of increasing dynamical complexity are also observed. The computation of the the finite-amplitude Lyapunov exponent allows us to establish the chaoticity of the (collective) dynamics in a finite region of the phase plane. The further numerical study of the standard Lyapunov spectrum reveals the presence of several positive exponents, indicating that the microscopic dynamics is high-dimensional.Comment: 6 pages, 5 eps figures, to appear on Europhysics Letters in 201

    Noise-driven Synchronization in Coupled Map Lattices

    Full text link
    Synchronization is shown to occur in spatially extended systems under the effect of additive spatio-temporal noise. In analogy to low dimensional systems, synchronized states are observable only if the maximum Lyapunov exponent Λ\Lambda is negative. However, a sufficiently high noise level can lead, in map with finite domain of definition, to nonlinear propagation of information, even in non chaotic systems. In this latter case the transition to synchronization is ruled by a new ingredient : the propagation velocity of information VFV_F. As a general statement, we can affirm that if VFV_F is finite the time needed to achieve a synchronized trajectory grows exponentially with the system size LL, while it increases logarithmically with LL when, for sufficiently large noise amplitude, VF=0V_F = 0 .Comment: 11 pages, Latex - 6 EPS Figs - Proceeding LSD 98 (Marseille

    Synchronization of spatio-temporal chaos as an absorbing phase transition: a study in 2+1 dimensions

    Full text link
    The synchronization transition between two coupled replicas of spatio-temporal chaotic systems in 2+1 dimensions is studied as a phase transition into an absorbing state - the synchronized state. Confirming the scenario drawn in 1+1 dimensional systems, the transition is found to belong to two different universality classes - Multiplicative Noise (MN) and Directed Percolation (DP) - depending on the linear or nonlinear character of damage spreading occurring in the coupled systems. By comparing coupled map lattice with two different stochastic models, accurate numerical estimates for MN in 2+1 dimensions are obtained. Finally, aiming to pave the way for future experimental studies, slightly non-identical replicas have been considered. It is shown that the presence of small differences between the dynamics of the two replicas acts as an external field in the context of absorbing phase transitions, and can be characterized in terms of a suitable critical exponent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen

    Thin front propagation in steady and unsteady cellular flows

    Full text link
    Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analytical approximation for the front speed, vfv_{{\scriptsize{f}}}, as a function of the stirring intensity, UU, in good agreement with the numerical results and, for large UU, the behavior vfU/log(U)v_{{\scriptsize{f}}}\sim U/\log(U) is predicted. The large scale of the velocity field mainly rules the front speed behavior even in the presence of smaller scales. In the unsteady (time-periodic) case, the front speed displays a phase-locking on the flow frequency and, albeit the Lagrangian dynamics is chaotic, chaos in front dynamics only survives for a transient. Asymptotically the front evolves periodically and chaos manifests only in the spatially wrinkled structure of the front.Comment: 12 pages, 13 figure

    Intermittent chaotic chimeras for coupled rotators

    Full text link
    Two symmetrically coupled populations of N oscillators with inertia mm display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendula. In particular, we report the first evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite life-times diverging as a power-law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.Comment: 6 pages, 5 figures SUbmitted to Physical Review E, as Rapid Communicatio

    Extensive and Sub-Extensive Chaos in Globally-Coupled Dynamical Systems

    Full text link
    Using a combination of analytical and numerical techniques, we show that chaos in globally-coupled identical dynamical systems, be they dissipative or Hamiltonian, is both extensive and sub-extensive: their spectrum of Lyapunov exponents is asymptotically flat (thus extensive) at the value λ0\lambda_0 given by a single unit forced by the mean-field, but sandwiched between sub-extensive bands containing typically O(logN)\mathcal{O}(\log N) exponents whose values vary as λλ+c/logN\lambda \simeq \lambda_\infty + c/\log N with λλ0\lambda_\infty \neq \lambda_0.Comment: 4 pages, 4 figures; minor changes made and 2 figure panels adde

    ERROR PROPAGATION IN EXTENDED CHAOTIC SYSTEMS

    Get PDF
    A strong analogy is found between the evolution of localized disturbances in extended chaotic systems and the propagation of fronts separating different phases. A condition for the evolution to be controlled by nonlinear mechanisms is derived on the basis of this relationship. An approximate expression for the nonlinear velocity is also determined by extending the concept of Lyapunov exponent to growth rate of finite perturbations.Comment: Tex file without figures- Figures and text in post-script available via anonymous ftp at ftp://wpts0.physik.uni-wuppertal.de/pub/torcini/jpa_le
    corecore