136 research outputs found
Stochastic mean field formulation of the dynamics of diluted neural networks
We consider pulse-coupled Leaky Integrate-and-Fire neural networks with
randomly distributed synaptic couplings. This random dilution induces
fluctuations in the evolution of the macroscopic variables and deterministic
chaos at the microscopic level. Our main aim is to mimic the effect of the
dilution as a noise source acting on the dynamics of a globally coupled
non-chaotic system. Indeed, the evolution of a diluted neural network can be
well approximated as a fully pulse coupled network, where each neuron is driven
by a mean synaptic current plus additive noise. These terms represent the
average and the fluctuations of the synaptic currents acting on the single
neurons in the diluted system. The main microscopic and macroscopic dynamical
features can be retrieved with this stochastic approximation. Furthermore, the
microscopic stability of the diluted network can be also reproduced, as
demonstrated from the almost coincidence of the measured Lyapunov exponents in
the deterministic and stochastic cases for an ample range of system sizes. Our
results strongly suggest that the fluctuations in the synaptic currents are
responsible for the emergence of chaos in this class of pulse coupled networks.Comment: 12 Pages, 4 Figure
Out-of-equilibrium versus dynamical and thermodynamical transitions for a model protein
Equilibrium and out-of-equilibrium transitions of an off-lattice protein
model have been identified and studied. In particular, the out-of-equilibrium
dynamics of the protein undergoing mechanical unfolding is investigated, and by
using a work fluctuation relation, the system free energy landscape is
evaluated. Three different structural transitions are identified along the
unfolding pathways. Furthermore, the reconstruction of the the free and
potential energy profiles in terms of inherent structure formalism allows us to
put in direct correspondence these transitions with the equilibrium thermal
transitions relevant for protein folding/unfolding. Through the study of the
fluctuations of the protein structure at different temperatures, we identify
the dynamical transitions, related to configurational rearrangements of the
protein, which are precursors of the thermal transitions.Comment: Proceedings of the "YKIS 2009 : Frontiers in Nonequilibrium Physics"
conference in Kyoto, August 2009. To appear in Progress of Theoretical
Physics Supplemen
Collective chaos in pulse-coupled neural networks
We study the dynamics of two symmetrically coupled populations of identical
leaky integrate-and-fire neurons characterized by an excitatory coupling. Upon
varying the coupling strength, we find symmetry-breaking transitions that lead
to the onset of various chimera states as well as to a new regime, where the
two populations are characterized by a different degree of synchronization.
Symmetric collective states of increasing dynamical complexity are also
observed. The computation of the the finite-amplitude Lyapunov exponent allows
us to establish the chaoticity of the (collective) dynamics in a finite region
of the phase plane. The further numerical study of the standard Lyapunov
spectrum reveals the presence of several positive exponents, indicating that
the microscopic dynamics is high-dimensional.Comment: 6 pages, 5 eps figures, to appear on Europhysics Letters in 201
Noise-driven Synchronization in Coupled Map Lattices
Synchronization is shown to occur in spatially extended systems under the
effect of additive spatio-temporal noise. In analogy to low dimensional
systems, synchronized states are observable only if the maximum Lyapunov
exponent is negative. However, a sufficiently high noise level can
lead, in map with finite domain of definition, to nonlinear propagation of
information, even in non chaotic systems. In this latter case the transition to
synchronization is ruled by a new ingredient : the propagation velocity of
information . As a general statement, we can affirm that if is
finite the time needed to achieve a synchronized trajectory grows exponentially
with the system size , while it increases logarithmically with when, for
sufficiently large noise amplitude, .Comment: 11 pages, Latex - 6 EPS Figs - Proceeding LSD 98 (Marseille
Synchronization of spatio-temporal chaos as an absorbing phase transition: a study in 2+1 dimensions
The synchronization transition between two coupled replicas of
spatio-temporal chaotic systems in 2+1 dimensions is studied as a phase
transition into an absorbing state - the synchronized state. Confirming the
scenario drawn in 1+1 dimensional systems, the transition is found to belong to
two different universality classes - Multiplicative Noise (MN) and Directed
Percolation (DP) - depending on the linear or nonlinear character of damage
spreading occurring in the coupled systems. By comparing coupled map lattice
with two different stochastic models, accurate numerical estimates for MN in
2+1 dimensions are obtained. Finally, aiming to pave the way for future
experimental studies, slightly non-identical replicas have been considered. It
is shown that the presence of small differences between the dynamics of the two
replicas acts as an external field in the context of absorbing phase
transitions, and can be characterized in terms of a suitable critical exponent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen
Thin front propagation in steady and unsteady cellular flows
Front propagation in two dimensional steady and unsteady cellular flows is
investigated in the limit of very fast reaction and sharp front, i.e., in the
geometrical optics limit. In the steady case, by means of a simplified model,
we provide an analytical approximation for the front speed,
, as a function of the stirring intensity, , in good
agreement with the numerical results and, for large , the behavior
is predicted. The large scale of the
velocity field mainly rules the front speed behavior even in the presence of
smaller scales. In the unsteady (time-periodic) case, the front speed displays
a phase-locking on the flow frequency and, albeit the Lagrangian dynamics is
chaotic, chaos in front dynamics only survives for a transient. Asymptotically
the front evolves periodically and chaos manifests only in the spatially
wrinkled structure of the front.Comment: 12 pages, 13 figure
Intermittent chaotic chimeras for coupled rotators
Two symmetrically coupled populations of N oscillators with inertia
display chaotic solutions with broken symmetry similar to experimental
observations with mechanical pendula. In particular, we report the first
evidence of intermittent chaotic chimeras, where one population is synchronized
and the other jumps erratically between laminar and turbulent phases. These
states have finite life-times diverging as a power-law with N and m. Lyapunov
analyses reveal chaotic properties in quantitative agreement with theoretical
predictions for globally coupled dissipative systems.Comment: 6 pages, 5 figures SUbmitted to Physical Review E, as Rapid
Communicatio
Extensive and Sub-Extensive Chaos in Globally-Coupled Dynamical Systems
Using a combination of analytical and numerical techniques, we show that
chaos in globally-coupled identical dynamical systems, be they dissipative or
Hamiltonian, is both extensive and sub-extensive: their spectrum of Lyapunov
exponents is asymptotically flat (thus extensive) at the value
given by a single unit forced by the mean-field, but sandwiched between
sub-extensive bands containing typically exponents whose
values vary as with .Comment: 4 pages, 4 figures; minor changes made and 2 figure panels adde
ERROR PROPAGATION IN EXTENDED CHAOTIC SYSTEMS
A strong analogy is found between the evolution of localized disturbances in
extended chaotic systems and the propagation of fronts separating different
phases. A condition for the evolution to be controlled by nonlinear mechanisms
is derived on the basis of this relationship. An approximate expression for the
nonlinear velocity is also determined by extending the concept of Lyapunov
exponent to growth rate of finite perturbations.Comment: Tex file without figures- Figures and text in post-script available
via anonymous ftp at ftp://wpts0.physik.uni-wuppertal.de/pub/torcini/jpa_le
- …