9 research outputs found

    Dynamical Expansion of H II Regions from Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds

    Get PDF
    The nature of ultracompact H II regions (UCHRs) remains poorly determined. In particular, they are about an order of magnitude more common than would be expected if they formed around young massive stars and lasted for one dynamical time, around 10^4 yr. We here perform three-dimensional numerical simulations of the expansion of an H II region into self-gravitating, radiatively cooled gas, both with and without supersonic turbulent flows. In the laminar case, we find that H II region expansion in a collapsing core produces nearly spherical shells, even if the ionizing source is off-center in the core. This agrees with analytic models of blast waves in power-law media. In the turbulent case, we find that the H II region does not disrupt the central collapsing region, but rather sweeps up a shell of gas in which further collapse occurs. Although this does not constitute triggering, as the swept-up gas would eventually have collapsed anyway, it does expose the collapsing regions to ionizing radiation. We suggest that these regions of secondary collapse, which will not all themselves form massive stars, may form the bulk of observed UCHRs. As the larger shell will take over 10^5 years to complete its evolution, this could solve the timescale problem. Our suggestion is supported by the ubiquitous observation of more diffuse emission surrounding UCHRs.Comment: accepted to ApJ, 40 pages, 13 b/w figures, changes from v1 include analytic prediction of radio luminosity, better description of code testing, and many minor changes also in response to refere

    HST Images Flash Ionization of Old Ejecta by the 2011 Eruption of Recurrent Nova T Pyxidis

    Get PDF
    T Pyxidis is the only recurrent nova surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowband Ha images of T Pyx . The flash of radiation from the nova event had no effect on the ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7e5 cm^-3 - at least an order of magnitude denser than the previously detected, unresolved [NII] knots surrounding T Pyx. Material to the northwest and southeast was photoionized between 132 and 183 days after the eruption began. 99 days later that hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. There is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [NII] - emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is probably an order of magnitude larger than that of the [NII] knots. We also determine that there is no significant reservoir of undetected ejecta from the outer boundaries of the previously detected ejecta out to about twice that distance, near the plane of the sky. The lack of distant ejecta is consistent with the Schaefer et al (2010) scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. This lack of distant ejecta is not consistent with scenarios in which T Pyx has been erupting continuously as a recurrent nova for many centuries or millennia.Comment: 27 pages, 10 figures, submitted to the Astrophysical Journa

    Carbonic Anhydrase Inhibitors: Design, Synthesis, and Biological Evaluation of Novel Sulfonyl Semicarbazide Derivatives

    No full text
    A series of novel sulfonyl semicarbazides <b>5</b>–<b>13</b> was designed, synthesized, and evaluated for human carbonic anhydrase (hCA) inhibition. The new sulfonyl semicarbazides were tested against a panel of hCA isoforms I, II, IX, and XII, using acetazolamide (AZA, <b>1</b>) as standard. All the sulfonyl semicarbazides showed subnanomolar affinity for hCA XII (p<i>K</i><sub>i</sub> range 0.59–0.79 nM) and high selectivity over hCA I (58–114-fold) and hCA IX (26–114-fold) compared to hCA II (5–20-fold except <b>11</b>, 121-fold). The importance of the nature of para-substitution on the sulfonyl substituted aromatic ring for potency and selectivity against one hCA isoform versus others is discussed. Overall, the research work led to the development of highly potent and selective hCA inhibitors
    corecore