87 research outputs found

    CREAMT:Creativity and narrative engagement of literary texts translated by translators and NMT

    Get PDF

    CREAMT:Creativity and narrative engagement of literary texts translated by translators and NMT

    Get PDF
    We present here the EU-funded project CREAMT that seeks to understand what is meant by creativity in different translation modalities, e.g. machine translation, post-editing or professional translation. Focusing on the textual elements that determine creativity in translated literary texts and the reader experience, CREAMT uses a novel, interdisciplinary approach to assess how effective MT is in literary translation considering creativity in translation and the ultimate user: the reader

    More semantic links in the SIMPLE-CLIPS database

    Get PDF
    Notwithstanding its acknowledged richness, the SIMPLE semantic model does not offer the representational vocabulary for encoding some conceptual links holding between events and their participants and among co-participants in events. Although critical for boosting performance in many NLP application tasks, such deep lexical information is therefore only partially encoded in the SIMPLE-CLIPS Italian semantic database. This paper reports on the enrichment of the SIMPLE relation set by some expressive means, namely semantic relations, borrowed from the EuroWordNet model and their implementation in the SIMPLE-CLIPS lexicon. The original situation existing in the database, as to the expression of this type of information is described and the loan descriptive vocabulary presented. Strategies based on the exploitation of the source lexicon data were adopted to induce new information: a wide range of semantic - but also syntactic - information was investigated for singling out word senses candidate to be linked by the new relations. The lexicon enrichment by 5,000 new relations instantiated so far has therefore been carried out as a largely automated, low-effort and cost-free process, with no heavy human intervention. The redundancy set off by such an extension of information is being addressed by the implementation of inheritance in the SIMPLE-CLIPS database (Del Gratta et al., 2008)

    Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Transfer

    Get PDF

    Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Transfer

    Get PDF
    Scarcity of parallel data causes formality style transfer models to have scarce success in preserving content. We show that fine-tuning pre-trained language (GPT-2) and sequence-to-sequence (BART) models boosts content preservation, and that this is possible even with limited amounts of parallel data. Augmenting these models with rewards that target style and content -- the two core aspects of the task -- we achieve a new state-of-the-art
    • …
    corecore