12 research outputs found

    Carbonyl Stress in Red Blood Cells and Hemoglobin

    No full text
    The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second—from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC—methylglyoxal (MG), triglycerides—in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science

    Expressed Soybean Leghemoglobin: Effect on Escherichia coli at Oxidative and Nitrosative Stress

    No full text
    Leghemoglobin (Lb) is an oxygen-binding plant hemoglobin of legume nodules, which participates in the symbiotic nitrogen fixation process. Another way to obtain Lb is its expression in bacteria, yeasts, or other organisms. This is promising for both obtaining Lb in the necessary quantity and scrutinizing it in model systems, e.g., its interaction with reactive oxygen (ROS) and nitrogen (RNS) species. The main goal of the work was to study how Lb expression affected the ability of Escherichia coli cells to tolerate oxidative and nitrosative stress. The bacterium E. coli with the embedded gene of soybean leghemoglobin a contains this protein in an active oxygenated state. The interaction of the expressed Lb with oxidative and nitrosative stress inducers (nitrosoglutathione, tert-butyl hydroperoxide, and benzylviologen) was studied by enzymatic methods and spectrophotometry. Lb formed NO complexes with heme-nitrosylLb or nonheme iron-dinitrosyl iron complexes (DNICs). The formation of Lb-bound DNICs was also detected by low-temperature electron paramagnetic resonance spectroscopy. Lb displayed peroxidase activity and catalyzed the reduction of organic peroxides. Despite this, E. coli-synthesized Lb were more sensitive to stress inducers. This might be due to the energy demand required by the Lb synthesis, as an alien protein consumes bacterial resources and thereby decreases adaptive potential of E. coli

    Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin

    No full text
    Donors of nitroxyl and nitroxyl anion (HNO/NO−) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO− can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases

    Regulation of P-Glycoprotein during Oxidative Stress

    No full text
    P-glycoprotein (Pgp, ABCB1, MDR1) is an efflux transporter protein that removes molecules from the cells (outflow) into the extracellular space. Pgp plays an important role in pharmacokinetics, ensuring the absorption, distribution, and excretion of drugs and its substrates, as well as in the transport of endogenous molecules (steroid and thyroid hormones). It also contributes to tumor cell resistance to chemotherapy. In this review, we summarize the mechanisms of Pgp regulation during oxidative stress. The currently available data suggest that Pgp has a complex variety of regulatory mechanisms under oxidative stress, involving many transcription factors, the main ones being Nrf2 and Nf-kB. These factors often overlap, and some can be activated under certain conditions, such as the deposition of oxidation products, depending on the severity of oxidative stress. In most cases, the expression of Pgp increases due to increased transcription and translation, but under severe oxidative stress, it can also decrease due to the oxidation of amino acids in its molecule. At the same time, Pgp acts as a protector against oxidative stress, eliminating the causative factors and removing its by-products, as well as participating in signaling pathways

    Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite

    No full text
    Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia

    Role of Nitric Oxide-Derived Metabolites in Reactions of Methylglyoxal with Lysine and Lysine-Rich Protein Leghemoglobin

    No full text
    Carbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction. One of the most active RCCs is α-dicarbonyl methylglyoxal (MG) that modifies biomolecules forming non-enzymatic glycation products. Organic free radicals are formed in the reaction between MG and lysine or Nα-acetyllysine. S-nitrosothiols and nitric oxide (•NO) donor PAPA NONOate increased the yield of organic free radical intermediates, while other •NO-derived metabolites, namely, nitroxyl anion and dinitrosyl iron complexes (DNICs) decreased it. At the late stages of the Maillard reaction, S-nitrosoglutathione (GSNO) also inhibited the formation of glycation end products (AGEs). The formation of a new type of DNICs, bound with Maillard reaction products, was found. The results obtained were used to explain the glycation features of legume hemoglobin—leghemoglobin (Lb), which is a lysine-rich protein. In Lb, lysine residues can form fluorescent cross-linked AGEs, and •NO-derived metabolites slow down their formation. The knowledge of these processes can be used to increase the stability of Lb. It can help in better understanding the impact of stress factors on legume plants and contribute to the production of recombinant Lb for biotechnology

    Role of Nitric Oxide-Derived Metabolites in Reactions of Methylglyoxal with Lysine and Lysine-Rich Protein Leghemoglobin

    No full text
    Carbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction. One of the most active RCCs is α-dicarbonyl methylglyoxal (MG) that modifies biomolecules forming non-enzymatic glycation products. Organic free radicals are formed in the reaction between MG and lysine or Nα-acetyllysine. S-nitrosothiols and nitric oxide (•NO) donor PAPA NONOate increased the yield of organic free radical intermediates, while other •NO-derived metabolites, namely, nitroxyl anion and dinitrosyl iron complexes (DNICs) decreased it. At the late stages of the Maillard reaction, S-nitrosoglutathione (GSNO) also inhibited the formation of glycation end products (AGEs). The formation of a new type of DNICs, bound with Maillard reaction products, was found. The results obtained were used to explain the glycation features of legume hemoglobin—leghemoglobin (Lb), which is a lysine-rich protein. In Lb, lysine residues can form fluorescent cross-linked AGEs, and •NO-derived metabolites slow down their formation. The knowledge of these processes can be used to increase the stability of Lb. It can help in better understanding the impact of stress factors on legume plants and contribute to the production of recombinant Lb for biotechnology

    Cloning and expression of plant leghemoglobin cDNA of Lupinus luteus in Escherichia coli and purification of the recombinant protein

    No full text
    The yellow lupin leghemoglobin I gene (lbI) was cloned in the pET-3a vector. It was overexpressed in Escherichia coli BL21(DE3)pLysS cells, under the control of T7 RNA polymerase promoter. The recombinant LbI protein, containing E. coli derived heme, was purified to homogeneity using ion exchange and gel filtration chromatography. The recombinant LbI protein has spectral and immunochemical properties identical to LbI isolated from lupin root nodules. The identity between expressed polypeptide and native LbI protein was also supported by microsequencing analysis of the N-terminus of the purified recombinant protein

    Protective Effect of Dinitrosyl Iron Complexes with Glutathione in Red Blood Cell Lysis Induced by Hypochlorous Acid

    No full text
    Hypochlorous acid (HOCl), one of the major precursors of free radicals in body cells and tissues, is endowed with strong prooxidant activity. In living systems, dinitrosyl iron complexes (DNIC) with glutathione ligands play the role of nitric oxide donors and possess a broad range of biological activities. At micromolar concentrations, DNIC effectively inhibit HOCl-induced lysis of red blood cells (RBCs) and manifest an ability to scavenge alkoxyl and alkylperoxyl radicals generated in the reaction of HOCl with tert-butyl hydroperoxide. DNIC proved to be more effective cytoprotective agents and organic free radical scavengers in comparison with reduced glutathione (GSH). At the same time, the kinetics of HOCl-induced oxidation of glutathione ligands in DNIC is slower than in the case of GSH. HOCl-induced oxidative conversions of thiolate ligands cause modification of DNIC, which manifests itself in inclusion of other ligands. It is suggested that the strong inhibiting effect of DNIC with glutathione on HOCl-induced lysis of RBCs is determined by their antioxidant and regulatory properties

    Interaction of reactive oxygen and nitrogen species with albumin- and methemoglobin-bound dinitrosyl-iron complexes.

    No full text
    Destructive effect of superoxide anions O2- derived from KO(2) or xanthine-xanthine oxidase system on dinitrosyl-iron complexes bound with bovine albumin or methemoglobin (DNIC-BSA or DNIC-MetHb) was demonstrated. The sensitivity of DNIC-BSA synthesized by the addition of DNIC with cysteine, thiosulfate or phosphate (DNIC-BSA-1, DNIC-BSA-2 or DNIC-BSA-3, respectively) to destructive action of O2- decreased in row: DNIC-BSA-1>DNIC-BSA-3>DNIC-BSA-2. The estimated rate constant for the reaction between O2- and DNIC-BSA-3 was equal to approximately 10(7)M(-1)s(-1). However, hydrogen peroxide and tert-butyl hydrogenperoxide (t-BOOH) did not induce any noticeable degradation of DNIC-BSA-3 even when used at concentrations exceeding by one order of magnitude those of the complex. As to their action on DNIC-MetHb both hydrogen peroxide and t-BOOH-induced rapid degradation of the complex. Both agents could induce the process due to the effect of alkylperoxyl or protein-derived free radicals formed at the interaction of the agents with ferri-heme groups of MetHb. Peroxynitrite (ONOO(-)) could also initiate protein-bound DNIC degradation more efficiently in the reaction with DNIC-BSA-3. Higher resistance of DNIC-MetHb to peroxynitrite was most probably due to the protective action of heme groups on ONOO(-). However, the analysis allows to suggest that the interaction of protein-bound DNICs with O2- is the only factor responsible for the degradation of the complexes in cells and tissues
    corecore