45 research outputs found

    A Microfluidic Co-Flow Route for Human Serum Albumin-Drug-Nanoparticle Assembly.

    Get PDF
    Nanoparticles are widely studied as carrier vehicles in biological systems because their size readily allows access through cellular membranes. Moreover, they have the potential to carry cargo molecules and as such, these factors make them especially attractive for intravenous drug delivery purposes. Interest in protein-based nanoparticles has recently gained attraction due to particle biocompatibility and lack of toxicity. However, the production of homogeneous protein nanoparticles with high encapsulation efficiencies, without the need for additional cross-linking or further engineering of the molecule, remains challenging. Herein, we present a microfluidic 3D co-flow device to generate human serum albumin/celastrol nanoparticles by co-flowing an aqueous protein solution with celastrol in ethanol. This microscale co-flow method resulted in the formation of nanoparticles with a homogeneous size distribution and an average size, which could be tuned from ≈100 nm to 1 μm by modulating the flow rates used. We show that the high stability of the particles stems from the covalent cross-linking of the naturally present cysteine residues within the particles formed during the assembly step. By choosing optimal flow rates during synthesis an encapsulation efficiency of 75±24 % was achieved. Finally, we show that this approach achieves significantly enhanced solubility of celastrol in the aqueous phase and, crucially, reduced cellular toxicity

    Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection.

    Get PDF
    The detection and analysis of proteins in a label-free manner under native solution conditions is an increasingly important objective in analytical bioscience platform development. Common approaches to detect native proteins in solution often require specific labels to enhance sensitivity. Dry mass sensing approaches, by contrast, using mechanical resonators, can operate in a label-free manner and offer attractive sensitivity. However, such approaches typically suffer from a lack of analyte selectivity as the interface between standard protein separation techniques and micro-resonator platforms is often constrained by qualitative mechanical sensor performance in the liquid phase. Here, we describe a strategy that overcomes this limitation by coupling liquid chromatography with a quartz crystal microbalance (QCM) platform by using a microfluidic spray dryer. We explore a strategy which allows first to separate a protein mixture in a physiological buffer solution using size exclusion chromatography, permitting specific protein fractions to be selected, desalted, and subsequently spray-dried onto the QCM for absolute mass analysis. By establishing a continuous flow interface between the chromatography column and the spray device via a flow splitter, simultaneous protein mass detection and sample fractionation is achieved, with sensitivity down to a 100 μg/mL limit of detection. This approach for quantitative label-free protein mixture analysis offers the potential for detection of protein species under physiological conditions.ERC EPSRC Frances and Augustus Newman Foundation Oppenheimer Early Career Fellowship Nanotechnologies Doctoral Training Centre Fluidic Analytics Lt
    corecore