6 research outputs found
Metascheduling and Heuristic Co-Allocation Strategies in Distributed Computing
In this paper, we address problems of efficient computing in distributed systems with non-dedicated resources including utility grid. There are global job flows from external users along with resource owner's local tasks upon the resource non-dedication condition. Competition for resource reservation between independent users, local and global job flows substantially complicates scheduling and the requirement to provide the necessary quality of service. A metascheduling concept, justified in this work, assumes a complex combination of job flow dispatching and application-level scheduling methods for parallel jobs, as well as resource sharing and consumption policies established in virtual organizations and based on economic principles. We introduce heuristic slot selection and co-allocation strategies for parallel jobs. They are formalized by given criteria and implemented by algorithms of linear complexity on an available slots number
Gene Expression Analysis of Potato (Solanum tuberosum L.) Lipoxygenase Cascade and Oxylipin Signature under Abiotic Stress
The metabolism of polyunsaturated fatty acids through the lipoxygenase-catalyzed step and subsequent reactions is referred to as the lipoxygenase (LOX) pathway. The components of this system, such as jasmonates, are involved in growth, development and defense reactions of plants. In this report, we focus on dynamics of expression of different LOX pathway genes and activities of target enzymes with three abiotic stress factors: darkness, salinity and herbicide toxicity. To obtain a more complete picture, the expression profiles of marker genes for salicylic acid, abscisic acid, ethylene, auxin and gibberellin-dependent signaling systems under the same stresses were also analyzed. The gene expression in Solanum tuberosum plants was analyzed using qRT-PCR, and we found that the LOX-cascade-related genes responded to darkness, salinity and herbicide toxicity in different ways. We detected activation of a number of 9-LOX pathway genes; however, in contrast to studies associated with biotic stress (infection), the 9-divinyl ether synthase branch of the LOX cascade was inhibited under all three stresses. GC-MS analysis of the oxylipin profiles also showed the main activity of the 9-LOX-cascade-related enzymes after treatment with herbicide and darkness
Scheduling Optimization in Grid with VO Stakeholders’ Preferences
The problem of intelligent Grid computing and job-flow scheduling with regard to preferences given by various groups of virtual organization (VO) stakeholders (such as users, resource owners and administrators) is studied. A specific flexible resources share algorithm is proposed for job-flow scheduling which enables to achive a balance between the VO stakeholders’ conflicting preferences and policies. This approach provides greater VO scheduling fairness, improves the overall quality of service and resource load efficiency. Two different metrics are introduced to find a scheduling solution balanced between VO stakeholders. Experimental results prove that the cyclic scheduling scheme allows establishing efficient cooperation between different VO stakeholders even if their goals and preferences are contradictory
Job Flow Distribution and Ranked Jobs Scheduling in Grid Virtual Organizations
In this work, we consider the problems of job flow distribution and ranked job framework forming within a model of cycle scheduling in Grid virtual organizations. The problem of job flow distribution is solved in terms of jobs and computing resource domains compatibility. A coefficient estimating such compatibility is introduced and studied experimentally. Two distribution strategies are suggested. Job framework forming is justified with such quality of service indicators as an average job execution time, a number of required scheduling cycles, and a number of job execution declines. Two methods for job selection and scheduling are proposed and compared: the first one is based on the knapsack problem solution, while the second one utilizes the mentioned compatibility coefficient. Along with these methods we present experimental results demonstrating the efficiency of proposed approaches and compare them with random job selection
Preference-based Fair Resource Sharing and Scheduling Optimization in Grid VOs
AbstractIn this paper, we deal with problems of efficient resource management and scheduling in utility Grids. There are global job flows from external users along with resource owners’ local tasks upon resource non-dedication condition. Competition for resource reservation between independent users, local and global job flows substantially complicates scheduling and the requirement to provide the necessary quality of service. A meta-scheduling model, justified in this work, assumes a complex combination of job flow dispatching and application-level scheduling methods for jobs, as well as resource sharing and consumption policies established in virtual organizations (VOs) and based on economic principles. A solution to the problem of fair resource sharing among VO stakeholders with simulation studies is proposed