22 research outputs found
Clastogenic Effect of Carthamus lanatus L. (Asteraceae)
The clastogenic effect of total dichloromethane, methanol and water extracts, four bioactive fractions and three individual constituents from Carthamus lanatus aerial parts were evaluated in mice by bone marrow chromosome aberration assay with mitomycin C as positive control. Significant differences in the percentage of aberrant mitosis of the extracts were observed. The dichloromethane extract exhibited a considerable clastogenic effect and the water extract a negligible one. Different types of chromosome aberrations and time-dependant effects for the active fractions and individual compounds were found
Inhibition of (-)-Propranol Hydrochloride by its enantiomer in white mice
Background: This study is based on the hypothesis, that the toxic or physiological effects of an optical isomer may be counteracted or reversed by the administration of a potentized preparation of one of its stereoisomers. In the present study the enantiomer was used. Methods: 154 ICR conventional mice were used. 77 mice were administered (R)-(+)-propranolol HCl homeopathic potency prior to and during the experiment, and the other 77 were administered indistinguishable placebo. On the day of the experiment the mice were sedated with intraperitoneal Rometar. Once sedated they were injected intraperitoneally with the LD50 dose of (S)-(-)-propranolol HCl. Results: The end point for statistical analysis was the difference in survival between the placebo and treatment mice. The odds ratio for survival of treatment mice relative to placebo mice was 1.64. The hypothesis of equal survival proportions gave a chi-square of 2.0916 (1 degree of freedom), which has a p-value of 0.1481. The analysis was then adjusted for mouse weight and intraperitoneal (-)-propranolol dosage using a logistic regression (LR) model. The LR treatment odds ratio was 2.017 and the LR treatment chi-square was 2.8864 (1 degree of freedom), which has a p-value of 0.0893. Consequently we accept the null hypothesis of no treatment effect on survival. The odds ratio estimates show that the treatment mice are 2.02 times more likely to survive than placebo mice, but this was not statistically significant with p = 0.089. Nine percent more treatment mice survived than placebo mice. The investigators accustomed to handling rodents noted that mouse recovery seemed substantially faster in the treatment mice than in the placebo mice
Inhibition of (-)-propranolol hydrochloride by its enantiomer in white mice: a placebo-controlled randomized study
Background: A previous pilot study was performed to see if toxicity of (S)-(-)-propranolol hydrochloride may be inhibited by a potentized preparation of its enantiomer. The present study is based on the hypothesis that the toxic effects of an optical isomer, may be counteracted or reversed by the administration of a potentized preparation of one of its stereoisomers, and in particular the enantiomer. Methods: 508 ICR conventional mice were used. 254 mice were administered (R)-(+)-propranolol HCl homeopathic potency prior to and during the experiment, and the other 254 were administered indistinguishable placebo. On the day of the experiment mice were anesthetized with intraperitoneal Rometar. Once sedated the mice were administered the LD50 dose of (-)-propranolol HCl intraperitoneally. Results: The end point for statistical analysis was the difference in survival between the placebo and treatment mice. The odds ratio for survival of treatment mice relative to placebo mice was 1.52. The hypothesis of equal survival proportions gave a chi-square of 5.0429 (1 degree of freedom), which has a p-value of 0.0247. The analysis was then adjusted for mouse weight and intraperitoneal (-)-propranolol dosage using a logistic regression (LR) model. The LR treatment odds ratio was 1.51 and the LR treatment chisquare was 4.8112 (1 degree of freedom), which has a p-value of 0.0283. Consequently, we reject the null hypothesis of no treatment effect on survival. Eleven percent more treatment mice survived than placebo mice. Conclusion: We conclude that the toxicity of intraperitoneal (-)-propranolol HCl, may be counteracted by administration of a potency of its enantiomer, in ICR conventional mice which have survived preceding intraperitoneal Rometar injection, and pre-dosing with (+)-propranolol HCl homeopathic potency
Combination with an antisense oligonucleotide synergistically improves the antileukemic efficacy of erucylphospho-N,N,N- trimethylpropylammonium in chronic myeloid leukemia cell lines
The aim of this study was to enhance the antileukemic efficacy of the alkylphosphocholine erucylphospho-N,N,N- trimethylpropylammonium (ErPC3) in chronic myeloid leukemia (CML)-derived cell lines by a bcr-directed antisense oligonucleotide (ASO-bcr). The mechanism was substantiated by Western blotting of the BCR-ABL expression level of CML cells, and the efficacy was substantiated by inhibition of colony formation compared with normal hematopoietic cells. The clonogenicity of K-562 cells expressing high levels of p210(BCR-ABL) was inhibited significantly by the ASO-bcr (T/C%, 30; P < 0.05) but not by ErPC3 (T/C%, 70). Combined sequential exposure to ErPC3 and the ASO-bcr, however, inhibited synergistically colony growth (T/C%, 3; P < 0.01). The colony growth of BV-173 cells expressing lower levels of p210(BCR-ABL) than K562 cells was inhibited to a greater extent by the ASO- bcr (T/C%, 15; P < 0.01). AR-230 cells that express high levels of p230(BCR-ABL) showed an intermediate decrease in colony formation in response to the ASO-bcr (T/C%, 20; P < 0.05). BCR- ABL levels of BV-173, CML-T1, and LAMA-84 cells were reduced in response to the ASO-bcr, as evidenced by Western blot. However, K-562 and AR-230 cells showed reduced BCR-ABL expression only after repeated treatment. ErPC3 and the ASO-bcr did not reduce colony formation (CFU-GM) of normal mouse bone marrow cells from long-term bone marrow cell cultures; instead, ErPC3 stimulated colony formation (P < 0.05) and did not induce chromosomal aberrations in mouse bone marrow. In conclusion, the combination of ErPC3 with a suitable antisense oligonucleotide inhibited synergistically colony formation of CML cell lines without damaging normal cells and thus might have a bearing on the purging of autologous hematopoietic transplants in CML patients
Inhibition of (-)-trans-(1S,2S)-U50488 hydrochloride by its enantiomer in white mice: a placebo-controlled, randomized study
Background: Previous studies have been performed to see if toxicity of optically active compounds may be inhibited by potentized preparations of their enantiomers. The present study is based on the hypothesis that the toxic effects of an optical isomer may be counteracted or reversed by the administration of a potentized preparation of one of its stereoisomers and in particular the enantiomer (patent applied for). Methods: The design was prospective, blind, randomized, and placebo-controlled. 210 ICR conventional mice were used. 105 mice were administered a mixture of (+)-U50488 hydrochloride homeopathic potencies prior to and during the experiment, and the other 105 were administered indistinguishable placebo. The first 52 mice were used to establish an LD50 of intraperitoneally administered (-)-U50488 hydrochloride under the conditions of this experiment. The estimated LD50 was 25 mg/kg. The remaining 158 mice were then administered this LD50 of (-)-U50488 HCl intraperitoneally. One mouse from the placebo group was excluded from the analysis because it died immediately after the possibly intravenous injection of (-)-U50488 HCl. Results: 67% of homeopathy mice survived compared with 47% of placebo mice. The end point for statistical analysis was the difference in survival between the placebo and homeopathy mice. The analysis was adjusted for mouse weight using a logistic regression (LR) model. The LR treatment odds ratio for survival of treatment mice relative to placebo mice was 2.301 and the LR treatment chi-square was 6.2030 (1 degree of freedom), which has a p-value of 0.0128. Consequently, we reject the null hypothesis of no treatment effect on survival. Conclusion: We conclude that toxicity of intraperitoneal injection of (-)-U50488 hydrochloride may be inhibited by administration of a mixture of potencies of its enantiomer
Study on Cytotoxic and Genotoxic Potential of Bulgarian <i>Rosa damascena</i> Mill. and <i>Rosa alba</i> L. Hydrosols—<i>In Vivo</i> and <i>In Vitro</i>
The Rosa alba L. and Rosa damascena Mill. growing in Bulgaria are known for their extremely fine essential oil and valuable hydrosols. Irrespectively of its wide use in human life, little research exists on the cytotoxic and genotoxic activity of the hydrosols. This set our goal to conduct cytogenetic analyses to study these effects. A complex of classical cytogenetic methods was applied in three types of experimental test systems—higher plant in vivo, ICR mice in vivo, and human lymphocytes in vitro. Mitotic index, PCE/(PCE + NCE) ratio, and nuclear division index were used as endpoints for cytotoxicity and for genotoxicity—induction of chromosome aberrations and micronuclei. Rose hydrosol treatments range in concentrations from 6% to 20%. It was obtained that both hydrosols did not show considerable cytotoxic and genotoxic effects. These effects depend on the type of the tested rose hydrosols, the concentrations applied in the experiments, and the sensitivity and specificity of the test systems used. Human lymphocytes in vitro were the most sensitive to hydrosols, followed by higher plant and animal cells. Chromosomal aberrations and micronucleus assays suggested that R. damascena and R. alba hydrosols at applied concentrations possess low genotoxic risk. Due to the overall low values in terms of cytotoxic and/or genotoxic effects in all test systems, hydrosols are promising for further use in various areas of human life
In vitro antitumour activity, safety testing and subcellular distribution of two poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s in Ehrlich ascites carcinoma and BALB/c 3T3 cell culture systems
Two polyphosphoesters containing anthracene-derived aminophosphonate and hydrophilic H-phosphonate repeating units, poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s (1 and 2), were tested for the in vitro antitumour activity on cell cultures derived from ascitic form of Ehrlich mammary adenocarcinoma by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-dye reduction assay. The in vitro safety testing of the copolymers was performed by BALB/c 3T3 neutral red uptake assay. A study on their uptake and subcellular distribution in non-tumourigenic and tumour cells was performed by means of fluorescence microscopy. Both copolymers showed significant antitumour activity towards Ehrlich ascites carcinoma (EAC) cells. However, the in vitro safety testing revealed significant toxicity of polymer 2 to BALB/c 3T3 mouse embryo cells. In contrast, polymer 1 showed complete absence of cytotoxicity to BALB/c 3T3 cells. The fluorescent studies showed that the substances were diffusely distributed in the cytoplasm in both cell culture systems. As opposed to BALB/c 3T3 cells, in EAC cells, intense fluorescent signal was observed in the nuclei and in the perinuclear region. The tested polyphosphoesters are expected to act under physiological conditions as prodrugs of aminophosphonates
Microwave assisted synthesis and X-ray structure of a novel anthracene-derived aminophosphonate. Enantioseparation of two α-aminophosphonates and genotoxicity in vivo
<p>A novel anthracene-derived α-aminophosphonate has been synthesized through a classical addition reaction of dimethyl phosphite to a Schiff base and via a microwave assisted Kabachnik–Fields reaction. The compound has been characterized by elemental analysis, TLC, IR, NMR, and fluorescent spectra. The X-ray analysis showed that the compound crystallizes in the orthorhombic space group <i>Pbca</i> (N° 61) with one molecule per asymmetric unit. The enantioseparation of two racemic aminophosphonates (<b>5</b> and <b>6</b>) into enantiomers (<b>5a, 5b</b> and <b>6a, 6b</b>, respectively) has been performed. Data about genotoxicity and antiproliferative activity in vivo of the racemic compounds and their enantiomeric forms is also presented. The studied racemic α-aminophosphonates <b>5</b> and <b>6</b> and their enantiomers have weak genotoxic effect. Both pairs of enantiomers did not show a significant inhibition of cell dividing processes in the bone marrow cells compared to <b>5</b> and <b>6</b>. The hematopoietic function of the bone marrow will not be discontinued after exposure of the tested compounds.</p