5 research outputs found
Metformin:A Narrative Review of Its Potential Benefits for Cardiovascular Disease, Cancer and Dementia
The biguanide metformin has been used as first-line therapy in type 2 diabetes mellitus (T2DM) treatment for several decades. In addition to its glucose-lowering properties and its prevention of weight gain, the landmark UK Prospective Diabetes Study (UKPDS) demonstrated cardioprotective properties in obese T2DM patients. Coupled with a favorable side effect profile and low cost, metformin has become the cornerstone in the treatment of T2DM worldwide. In addition, metformin is increasingly being investigated for its potential anticancer and neuroprotective properties both in T2DM patients and non-diabetic individuals. In the meantime, new drugs with powerful cardioprotective properties have been introduced and compete with metformin for its place in the treatment of T2DM. In this review we will discuss actual insights in the various working mechanisms of metformin and the evidence for its beneficial effects on (the prevention of) cardiovascular disease, cancer and dementia. In addition to observational evidence, emphasis is placed on randomized trials and recent meta-analyses to obtain an up-to-date overview of the use of metformin in clinical practice
Metformin and high-sensitivity cardiac troponin I and T trajectories in type 2 diabetes patients: a post-hoc analysis of a randomized controlled trial
Background: Metformin has favorable effects on cardiovascular outcomes in both newly onset and advanced type 2 diabetes, as previously reported findings from the UK Prospective Diabetes Study and the HOME trial have demonstrated. Patients with type 2 diabetes present with chronically elevated circulating cardiac troponin levels, an established predictor of cardiovascular endpoints and prognostic marker of subclinical myocardial injury. It is unknown whether metformin affects cardiac troponin levels. The study aimed to evaluate cardiac troponin I and T trajectories in patients with diabetes treated either with metformin or placebo. Methods: This study is a post-hoc analysis of a randomized controlled trial (HOME trial) that included 390 patients with advanced type 2 diabetes randomized to 850 mg metformin or placebo up to three times daily concomitant to continued insulin treatment. Cardiac troponin I and T concentrations were measured at baseline and after 4, 17, 30, 43 and 52 months. We evaluated cardiac troponin trajectories by linear mixed-effects modeling, correcting for age, sex, smoking status and history of cardiovascular disease. Results: This study enrolled 390 subjects, of which 196 received metformin and 194 received placebo. In the treatment and placebo groups, mean age was 64 and 59 years; with 50% and 58% of subjects of the female sex, respectively. Despite the previously reported reduction of macrovascular disease risk in this cohort by metformin, linear mixed-effects regression modelling did not reveal evidence for an effect on cardiac troponin I and cardiac troponin T levels [− 8.4% (− 18.6, 3.2), p = 0.150, and − 4.6% (− 12, 3.2), p = 0.242, respectively]. A statistically significant time-treatment interaction was found for troponin T [− 1.6% (− 2.9, − 0.2), p = 0.021] but not troponin I concentrations [− 1.5% (− 4.2, 1.2), p = 0.263]. Conclusions: In this post-hoc analysis of a 4.3-year randomized controlled trial, metformin did not exert a clinically relevant effect on cardiac troponin I and cardiac troponin T levels when compared to placebo. Cardioprotective effects of the drug observed in clinical studies are not reflected by a reduction in these biomarkers of subclinical myocardial injury. Trial registration ClinicalTrials.gov identifier NCT00375388
Effect of metformin on arginine and dimethylarginines in patients with advanced type 2 diabetes: A post hoc analysis of a randomized trial
AIM: To study the effect of metformin on plasma levels of arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), indicators of the nitric oxide pathway. MATERIALS AND METHODS: In this post hoc analysis of the HOME trial, we analysed plasma levels of arginine, ADMA and SDMA during the 4.3-year follow-up (comparing the effects of metformin versus placebo on top of insulin therapy). Statistical analysis was performed with a mixed model approach, in which simultaneously constant treatment effects were estimated, as well as time-dependent treatment effects. RESULTS: We found that metformin compared with placebo did not affect ADMA or SDMA plasma levels but rapidly decreased arginine plasma levels and hence the arginine to ADMA ratio. The constant treatment effect on ADMA was 0.99 (95% CI 0.97, 1.00) relative to placebo and the time-dependent treatment effect was 1.00 (95% CI 1.00, 1.01). By contrast, the constant treatment effect on arginine was 0.86 (95% CI 0.84, 0.88), with only a minimal time-dependent change of 1.01 (95% CI 1.00, 1.01). CONCLUSIONS: The potential benefits of metformin on endothelial function cannot be explained by a decrease in ADMA or by improved global arginine availability. The clinical significance of the decreased arginine plasma levels is not clear and can be harmful or beneficial, depending on the mechanism involved. However, a potential effect of metformin on the nitric oxide pathway is not restricted to the studied metabolites
Effect of metformin on arginine and dimethylarginines in patients with advanced type 2 diabetes:A post hoc analysis of a randomized trial
Aim: To study the effect of metformin on plasma levels of arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), indicators of the nitric oxide pathway. Materials and Methods: In this post hoc analysis of the HOME trial, we analysed plasma levels of arginine, ADMA and SDMA during the 4.3-year follow-up (comparing the effects of metformin versus placebo on top of insulin therapy). Statistical analysis was performed with a mixed model approach, in which simultaneously constant treatment effects were estimated, as well as time-dependent treatment effects. Results: We found that metformin compared with placebo did not affect ADMA or SDMA plasma levels but rapidly decreased arginine plasma levels and hence the arginine to ADMA ratio. The constant treatment effect on ADMA was 0.99 (95% CI 0.97, 1.00) relative to placebo and the time-dependent treatment effect was 1.00 (95% CI 1.00, 1.01). By contrast, the constant treatment effect on arginine was 0.86 (95% CI 0.84, 0.88), with only a minimal time-dependent change of 1.01 (95% CI 1.00, 1.01). Conclusions: The potential benefits of metformin on endothelial function cannot be explained by a decrease in ADMA or by improved global arginine availability. The clinical significance of the decreased arginine plasma levels is not clear and can be harmful or beneficial, depending on the mechanism involved. However, a potential effect of metformin on the nitric oxide pathway is not restricted to the studied metabolites
Metformin and N-terminal pro B-type natriuretic peptide in type 2 diabetes patients, a post-hoc analysis of a randomized controlled trial.
BackgroundBeyond antihyperglycemic effects, metformin may improve cardiovascular outcomes. Patients with type 2 diabetes often have an elevated plasma level of N-terminal pro B-type as a marker of (sub) clinical cardiovascular disease. We studied whether metformin was associated with a reduction in the serum level of N-terminal pro B-type natriuretic peptide (NT-proBNP) in these patients.MethodsIn the HOME trial 390 insulin-treated patients with type 2 diabetes were randomized to 850 mg metformin or placebo three times daily. Plasma samples were drawn at baseline, 4, 17, 30, 43 and 52 months. In a post-hoc analysis we analyzed the change in NT-proBNP in both groups. We used a longitudinal mixed model analysis adjusting for age, sex and prior cardiovascular disease. In a secondary analysis we assessed a possible immediate treatment effect post baseline.ResultsMetformin did not affect NT-proBNP levels over time in the primary analysis (-1% [95%CI -4;3, p = 0.62]). In the secondary analysis there was also no sustained time independent immediate treatment effect (initial increase of 17% [95%CI 4;30, p = 0.006] followed by yearly decrease of -4% [95%CI -7;0, p = 0.07]).ConclusionsMetformin as compared to placebo did not affect NT-proBNP plasma levels in this 4.3-year placebo-controlled trial. Potential cardioprotective effects of metformin cannot be explained by changes in cardiac pressures or volumes to the extent reflected by NT-proBNP