4 research outputs found

    N- and KRAS mutations in primary testicular germ cell tumors: Incidence and possible biological implications

    Get PDF
    Recently, conflicting results have been reported on the incidence of RAS mutations in primary testicular germ cell tumors of adults (TGCTs). In four studies a low incidence of mutations (less than 15%) in a variety of TGCTs or derived cell lines was found, whereas in two other studies a high incidence of N- or KRAS mutations (over 40%) was shown. A total of 62 testicular seminomas (SE) and 34 nonseminomatous TGCTs (NS) were studied thus far. The largest series consisted of 42 TGCTs, studied on paraffin embedded tissue. We present the results of analysis for the presence of N- and KRAS mutations, in codons 12, 13, and 61, in snap frozen samples of 100 primary TGCTs, comprising 40 SE and 60 NS. Using the polymerase chain reaction (PCR) and allele specific oligonucleotide hybridization (ASO), mutations were found in five SE (three in NRAS and two in KRAS, all codon 12), and in one NS (KRAS, codon 12). To exclude underestimation of the incidence of RAS mutations in TGCTs due to the presence of an excess of wild type alleles in the analyzed sample, a PCR technique preferentially ampli

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A method to monitor mRNA levels in human breast tumor cells obtained by fine-needle aspiration

    No full text
    A method based on the reverse transcriptase-polymerase chain reaction (RT-PCR) was developed that allows the determination of relative mRNA expression levels in fine-needle aspirates from human tumors. The method was developed for the c-erbB-2 gene, using the porphobilinogen deaminase (PBGD) gene as an internal standard. It was validated for mRNA isolated from cell lines and for material obtained by fine-needle aspiration from human breast cancer. Gene expression levels were determined by measuring the activity of radiolabeled RTPCR-amplified gene-specific bands with a phosphor imager. At least four points are measured on the log-linear part of the amplification cycle versus signal intensity curves, and subsequently the distance between the curves of the gene of interest and that of an internal standard gene is used to calculate the relative expression levels. The method worked equally well with the BRCA1 gene, illustrating that it can be generalized to other genes. The method is suitable to measure or monitor semiquantitively gene expression levels in accessible human tumors in situ
    corecore