35 research outputs found
Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin
Author Posting. Ā© American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4539ā4553, doi:10.1002/2016JC012549.Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (ā¼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ā¼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.NSF Ocean Sciences Chemical Oceanography program Grant Numbers: OCE-0425677, OCE-0851350;
Ocean and Climate Change Institute of WHOI2017-12-0
Lithogenic particle transport trajectories on the Northwest Atlantic Margin
Author Posting. Ā© American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(1), (2021): e2020JC016802, https://doi.org/10.1029/2020JC016802.The neodymium isotopic composition of the detrital (lithogenic) fraction (ĪµNdādetrital) of surface sediments and sinking particles was examined to constrain transport trajectories associated with hemipelagic sedimentation on the northwest Atlantic margin. The provenance of resuspended sediments and modes of lateral transport in the water column were of particular interest given the energetic hydrodynamic regime that sustains bottom and intermediate nepheloid layers over the margin. A large acrossāmargin gradient of ā¼5 ĪµNd units was observed for surface sediments, implying strong contrasts in sediment provenance, with ĪµNdādetrital values on the lower slope similar to those of āupstream regionsā (Scotian margin) under the influence of the Deep Western Boundary Current (DWBC). Sinking particles collected at three depths at a site (total water depth, ā¼3,000 m) on the New England margin within the core of the DWBC exhibited a similarly large range in ĪµNdādetrital values. The ĪµNdādetrital values of particles intercepted at intermediate water depths (1,000 and 2,000 m) were similar to each other but significantly higher than those at 3,000 m (ā¼50 m above the seafloor). These observations suggest that lithogenic material accumulating in the upper two traps was primarily advected in intermediate nepheloid layers emanating from the adjacent shelf, while that at 3,000 m is strongly influenced by sediment resuspension and alongāmargin, southward lateral transport within the bottom nepheloid layer via entrainment in the DWBC. Our results highlight the importance of both alongā and acrossāmargin sediment transport as vectors for lithogenic material and associated organic carbon transport.This research was funded by the NSF Ocean Sciences Chemical Oceanography program (OCEā0425677; OCEā0851350). JH was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020R1A2C1008378).2021-06-0
Surface freshening in the Arctic Ocean's Eurasian Basin : an apparent consequence of recent change in the wind-driven circulation
Author Posting. Ā© American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D03, doi:10.1029/2011JC006975.Data collected by an autonomous ice-based observatory that drifted into the Eurasian Basin between April and November 2010 indicate that the upper ocean was appreciably fresher than in 2007 and 2008. Sea ice and snowmelt over the course of the 2010 drift amounted to an input of less than 0.5 m of liquid freshwater to the ocean (comparable to the freshening by melting estimated for those previous years), while the observed change in upper-ocean salinity over the melt period implies a freshwater gain of about 0.7 m. Results of a wind-driven ocean model corroborate the observations of freshening and suggest that unusually fresh surface waters observed in parts of the Eurasian Basin in 2010 may have been due to the spreading of anomalously fresh water previously residing in the Beaufort Gyre. This flux is likely associated with a 2009 shift in the large-scale atmospheric circulation to a significant reduction in strength of the anticyclonic Beaufort Gyre and the Transpolar Drift Stream.This work was
funded by the National Science Foundation Office of Polar Programs Arctic
Sciences Section under awards ARCā0519899, ARCā0856479, and ARCā
0806306
Earth Science Datacasting v2.0
The Datacasting software, which consists of a server and a client, has been developed as part of the Earth Science (ES) Datacasting project. The goal of ES Datacasting is to provide scientists the ability to automatically and continuously download Earth science data that meets a precise, predefined need, and then to instantaneously visualize it on a local computer. This is achieved by applying the concept of podcasting to deliver science data over the Internet using RSS (Really Simple Syndication) XML feeds. By extending the RSS specification, scientists can filter a feed and only download the files that are required for a particular application (for example, only files that contain information about a particular event, such as a hurricane or flood). The extension also provides the ability for the client to understand the format of the data and visualize the information locally. The server part enables a data provider to create and serve basic Datacasting (RSS-based) feeds. The user can subscribe to any number of feeds, view the information related to each item contained within a feed (including browse pre-made images), manually download files associated with items, and place these files in a local store. The client-server architecture enables users to: a) Subscribe and interpret multiple Datacasting feeds (same look and feel as a typical mail client), b) Maintain a list of all items within each feed, c) Enable filtering on the lists based on different metadata attributes contained within the feed (list will reference only data files of interest), d) Visualize the reference data and associated metadata, e) Download files referenced within the list, and f) Automatically download files as new items become available
Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone
A comprehensive set of autonomous, ice-ocean measurements were collected across the Canada Basin to study the summer evolution of the ice-ocean boundary layer (IOBL) and ocean mixed layer (OML). Evaluation of local heat and freshwater balances and associated turbulent forcing reveals that melt ponds (MPs) strongly influence the summer IOBL-OML evolution. Areal expansion of MPs in mid-June start the upper ocean evolution resulting in significant increases to ocean absorbed radiative flux (19 W mā2 in this study). Buoyancy provided by MP drainage shoals and freshens the IOBL resulting in a 39 MJ mā2 increase in heat storage in just 19 days (52% of the summer total). Following MP drainage, a near-surface fresh layer deepens through shear-forced mixing to form the summer mixed layer (sML). In late summer, basal melt increases due to stronger turbulent mixing in the thin sML and the expansion of open water areas due in part to wind-forced divergence of the sea ice. Thermal heterogeneities in the marginal ice zone (MIZ) upper ocean led to large ocean-to-ice heat fluxes (100ā200 W mā2) and enhanced basal ice melt (3ā6 cm dā1), well away from the ice edge. Calculation of the upper ocean heat budget shows that local radiative heat input accounted for at least 89% of the observed latent heat losses and heat storage (partitioned 0.77/0.23). These results suggest that the extensive area of deteriorating sea ice observed away from the ice edge during the 2014 season, termed the āthermodynamically forced MIZ,ā was driven primarily by local shortwave radiative forcing
Toward Improved Observing of the Rapidly Changing Arctic Ocean
Arctic Observing Summit (April 30 ā May 2, 2013, Vancouver, Canada); AON statementIn order to observe and understand the Arctic Ocean and its response to climate change, the traditional approach of acquiring observations when and where the Arctic is accessible has to be enhanced with multi-faceted measurement systems operating autonomously to provide year-round information in real time. The major goal of such a network of autonomous sensors is to measure and monitor physical, chemical and biological parameters in the atmosphere, sea ice and ocean on at least daily intervals
Recommended from our members
OFFGAS GENERATION FROM THE DISPOSITION OF SCRAP PLUTONIUM BY VITRIFICATION SIMULANT TESTS
The Department of Energy Office of Environmental Management is supporting R&D for the conceptual design of the Plutonium Disposition Project at the Savannah River Site in Aiken, SC to reduce the attractiveness of plutonium scrap by fabricating a durable plutonium oxide glass form and immobilizing this form within the high-level waste glass prepared in the Defense Waste Processing Facility. A glass formulation was developed that is capable of incorporating large amounts of actinides as well as accommodating many impurities that may be associated with impure Pu feed streams. The basis for the glass formulation was derived from commercial glasses that had high lanthanide loadings. A development effort led to a Lanthanide BoroSilicate (LaBS) glass that accommodated significant quantities of actinides, tolerated impurities associated with the actinide feed streams and could be processed using established melter technologies. A Cylindrical Induction Melter (CIM) was used for vitrification of the Pu LaBS glass. Induction melting for the immobilization of americium and curium (Am/Cm) in a glass matrix was first demonstrated in 1997. The induction melting system was developed to vitrify a non-radioactive Am/Cm simulant combined with a glass frit. Most of the development of the melter itself was completed as part of that work. This same melter system used for Am/Cm was used for the current work. The CIM system used consisted of a 5 inch (12.7 cm) diameter inductively heated platinum-rhodium (Pt-Rh) containment vessel with a control system and offgas characterization. Scrap plutonium can contain numerous impurities including significant amounts of chlorides, fluorides, sodium, potassium, lead, gallium, chromium, and nickel. Smaller amounts of additional elements can also be present. The amount of chlorides present is unusually high for a melter feed. In commercial applications there is no reason to have chloride at such high concentrations. Because the melter operates at 1400-1475 C, many of the impurities present are extremely volatile. An alternative being considered is to pre-treat the impure PuO{sub 2} by water washing to remove the soluble salts, which would significantly reduce the melter emissions. The disadvantage of the washing alternative is the criticality concerns of using water with plutonium. In this paper, the testing that has been conducted at the Savannah River National Laboratory (SRNL) to demonstrate induction melting of impure plutonium simulants will be described. The work described concentrates on quantification of the gaseous and particulate emissions from the induction melter. The Pt-Rh melter vessel is a cylinder with a conical bottom and a tubular drain as shown in Figure 1. A 5-inch (12.7 cm) diameter CIM was used for all of the emissions tests. A 6-inch (15.24 cm) diameter CIM, which is the size of the full-scale melter, has since been constructed for further testing. The 5-inch CIM is heated by three induction coils: one for the 5 inch cylinder, one for the conical section, and one for the 1/4-inch (6.35 mm) drain tube. The 6-inch CIM is similar except the cylinder heater extends lower and also heats the cone. The induction heating system is manufactured by Ameritherm{trademark}. The heating system is controlled by a PC to maintain a specific heat up profile and then maintain a constant energy input that maintains a constant temperature. The CIM is operated in batch mode where the plutonium simulant and the glass-forming frit are first thoroughly mixed in an attrittor mill, then added to the melter. Hafnium oxide (HfO{sub 2}) is used as a simulant for the radioactive PuO{sub 2}. The melter is heated until the mixture begins to melt at about 1100 C, then completely melts at about 1400-1450 C. This temperature is maintained for about three hours. While the temperature is maintained at {approx} 1400 C, an air bubbler is normally used to promote mixing of the glass-forming frit and the waste simulant
High-frequency acoustic scattering from turbulent oceanic microstructure : the importance of density fluctuations
Author Posting. Ā© Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 2685-2697, doi:10.1121/1.1614258.Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent oceanic microstructure is presented in which the current theory, which only accounts for fluctuations in the sound speed, has been extended to include fluctuations in the density as well. The inclusion of density fluctuations results in an expression for the scattering cross section per unit volume, Ļv, that is explicitly dependent on the scattering angle. By relating the variability in the density and sound speed to random fluctuations in oceanic temperature and salinity, Ļv has been expressed in terms of the temperature and salinity wave number spectra, and the temperature-salinity co-spectrum. A Batchelor spectrum for temperature and salinity, which depends on parameters such as the dissipation rates of turbulent kinetic energy and temperature variance, has been used to evaluate Ļv. Two models for the temperature-salinity co-spectrum have also been used. The predictions indicate that fluctuations in the density could be as important in determining backscattering as fluctuations in the sound speed. Using data obtained in the ocean with a high resolution vertical microstructure profiler, it is predicted that scattering from oceanic microstructure can be as strong as scattering from zooplankton.This work was supported in part by ONR, NSF, and
the Woods Hole Oceanographic Institution
Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer
The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20ā30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal