5 research outputs found

    Complexity biomechanics: a case study of dragonfly wing design from constituting composite material to higher structural levels.

    Get PDF
    Presenting a novel framework for sustainable and regenerative design and development is a fundamental future need. Here we argue that a new framework, referred to as complexity biomechanics, which can be used for holistic analysis and understanding of natural mechanical systems, is key to fulfilling this need. We also present a roadmap for the design and development of intelligent and complex engineering materials, mechanisms, structures, systems, and processes capable of automatic adaptation and self-organization in response to ever-changing environments. We apply complexity biomechanics to elucidate how the different structural components of a complex biological system as dragonfly wings, from ultrastructure of the cuticle, the constituting bio-composite material of the wing, to higher structural levels, collaboratively contribute to the functionality of the entire wing system. This framework not only proposes a paradigm shift in understanding and drawing inspiration from natural systems but also holds potential applications in various domains, including materials science and engineering, biomechanics, biomimetics, bionics, and engineering biology. [Abstract copyright: © 2024 The Author(s).

    Basal complex: a smart wing component for automatic shape morphing

    Get PDF
    Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing’s proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems

    An insect-inspired asymmetric hinge in a double-layer membrane

    No full text
    Insect wings are deformable aerofoils, in which deformations are mostly achieved by complicated interactions between their structural components. Due to the complexity of the wing design and technical challenges associated with testing the delicate wings, we know little about the properties of their components and how they determine wing response to flight forces. Here we report a novel, previously undescribed structure from the hind wing membrane of the beetle Pachnoda marginata. The structure, a transverse section of the claval flexion line, consists of two distinguishable layers: a bell-shaped upper layer and a straight lower layer. Our computational simulations showed that this is an effective one-way hinge, which is stiff in tension and upward bending but flexible in compression and downward bending. By systematically varying its design parameters in a computational model, we showed that the properties of the double-layer membrane hinge can be tuned over a wide range. This enabled us to develop a broad design space, which we later used for model selection. We used selected models in three distinct applications, which proved that the double-layer hinge represents a simple, yet effective design strategy for controlling the mechanical response of structures using a single material and with no extra mass. The insect-inspired one-way hinge is particularly useful for developing structures with asymmetric behaviour, exhibiting different responses to the same load in two opposite directions. This multidisciplinary study not only advances our understanding of the biomechanics of complicated insect wings, but also informs the design of easily tuneable engineering hinges

    Wing Coupling in Bees and Wasps: From the Underlying Science to Bioinspired Engineering

    Get PDF
    Wing-to-wing coupling mechanisms synchronize motions of insect wings and minimize their aerodynamic interference. Albeit they share the same function, their morphological traits appreciably vary across groups. Here the structure–material–function relationship of wing couplings of nine castes and species of Hymenoptera is investigated. It is shown that the springiness, robustness, and asymmetric behavior augment the functionality of the coupling by reducing stress concentrations and minimizing the impacts of excessive flight forces. A quantitative link is established between morphological variants of the coupling mechanisms and forces to which they are subjected. Inspired by the coupling mechanisms, a rotating-sliding mechanical joint that withstands tension and compression and can also be locked/unlocked is fabricated. This is the first biomimetic research of this type that integrates approaches from biology and engineering

    Basal complex: a smart wing component for automatic shape morphing

    No full text
    Abstract Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing’s proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems
    corecore