303 research outputs found

    Introducing functional composite materials

    Get PDF

    Surface cleaning of 2D materials : Boron Nitride Nanosheets (BNNS) and exfoliated Graphite Nanoplatelets (GNP)

    Get PDF
    Surface impurities such as water and surfactants can significantly affect the properties of 2D materials. They disrupt the 2D material lattice structure and surface chemistry and also promote electron and phonon scattering. Strategies to clean the surfaces of 2D materials are therefore critical to achieving optimal properties. Boron nitride nanosheets (BNNS) and exfoliated graphite nanoplatelets (GNP) are treated using three procedures: washing with ethanol, water‐assisted freeze‐drying, and freeze‐drying without addition of water in an attempt to remove two impurities—water and an ionic surfactant (sodium cholate, SC). There is total removal of water from BNNS when the starting material is treated using either freeze drying method whereas some water (≈40%) and traces of ethanol are detected in BNNS when washed with ethanol. It is not possible to exclude the presence of SC on BNNS and GNP post treatment; however, the relatively high amount of sodium (from SC) in the samples after freeze‐drying suggests the process contributed to the separation of BNNS and GNP aggregates. The BNNS flakes separate when washed with ethanol or freeze‐dried in the absence of water. The crystalline structure of BNNS and GNP is retained post treatments. This approach provides a route to cleaning and separating 2D materials

    Fused deposition modelling (FDM) of composites of graphene nanoplatelets and polymers for high thermal conductivity : a mini-review

    Get PDF
    Composites of polymers and the graphene family of 2D materials continue to attract great interest due their potential to dissipate heat, thus extending the in-service life of electronic and other devices. Such composites can be 3D printed using Fused Deposition Modelling into complex bespoke structures having enhanced properties, including thermal conductivity in different directions. While there are controversial opinions on the limitations of FDM for large-scale and high volume production (e.g. long production times, and expensive printers required), FDM is an innovative solution to the manufacture of small objects where effective thermal management is required and it is a valid alternative for the manufacture of (micro)-electronic components. There are few papers published on the FDM of functional composite materials based on graphene(s). In this mini-review, we describe the many technical challenges that remain to successful printing of these composites by FDM, including orientation effects, void formation, printing and feeding rates, nozzle and printing bed temperatures and the role each has in determining the thermal conductivity of any composite product made by FDM. We also compare these initial reports with those on FDM of other and related carbonaceous fillers, such as multi-walled carbon nanotubes and carbon fibre

    Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan

    Get PDF
    While chitosan has great potential for biomedical and wider application due to its appealing characteristics such as biocompatibility and inherent antimicrobial activity, its properties usually need to be further tailored for specific uses. In this study, the effect of inclusion of silk peptide (SP) and nanoclays (montmorillonite, MMT and sepiolite, SPT) on the properties of thermomechanically processed chitosan were examined. Blending SP with chitosan led to a material with greater elasticity and surface wettability. For the chitosan matrix, addition of either MMT or SPT resulted in increased mechanical properties with MMT being more effective, likely due to its 2D layered structure. For the chitosan/SP matrix, while inclusion of MMT caused increased mechanical properties and thermal stability, SPT was more effective than MMT at reducing surface hydrophilicity and SPT fully counteracted the increased surface hydrophilicity caused by SP. Thus, this work shows the different effects of MMT and SPT on chitosan-based materials and provides insights into achieving balanced properties

    Ionic liquid (1-ethyl-3-methylimidazolium acetate) plasticization of chitosan-based bionanocomposites

    Get PDF
    The structure and properties of different biopolymer composites based on chitosan and chitosan/carboxymethyl cellulose (CMC) are governed by multiple structure–property relationships associated with different phase interactions. Plasticization of these matrices with ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) played a dominant role, increasing the mobility of biopolymer chains as well as ions and associated dipoles but reducing biopolymer chain interactions, crystallinity, and thermal stability. These structural changes led to higher matrix ionic conductivity, shorter electrical relaxation time, and greater matrix ductility. The inclusion of graphene oxide (GO) and reduced GO (rGO) also influenced the structure and properties of these bionanocomposites by disrupting the biopolymer hydrogen bonding and/or polyelectrolyte complexation (PEC) and interacting with [C2mim][OAc]. The impact of GO/rGO was more evident for 20 wt % [C2mim][OAc], such as increased crystallinity and thermal stability of chitosan. PEC was hindered with excess (40 wt %) [C2mim][OAc] added and further hindered again when rGO was included. This study shows that the structure and properties of bionanocomposites are not just determined by the surface chemistry of GO/rGO but can also be influenced by multiple interactions involving plasticizers such as ILs and additional biopolymers

    On the phase affinity of multi-walled carbon nanotubes in PMMA:LDPE immiscible polymer blends.

    Get PDF
    The localization of multi-walled carbon nanotubes (MWCNTs) in PMMA/LDPE blends was studied. Theoretical predictions suggested their preferential localization in the PMMA. Conversely, experimental work revealed that non-functionalized MWCNTs located in the LDPE, polymer first to melt. When the extrusion time is not long enough, the MWCNTs do not have the chance to further migrate to the thermodynamically most favourable phase. The evolution of a double percolation determined if the composite became semi-conductive. In that sense, two blends with PMMA to LDPE ratios of 80:20 and 20:80 containing 2 wt.% MWCNTs had electrical resistivity values in the order of 105 and 1012 Ω cm, respectively. Only in the 80:20 blend was the “effective” MWCNT concentration high enough such that electrical percolation was attained. However, bulk rheological properties were controlled by the major phase. Thus, 2 wt.% MWCNTs had a notable effect on the linear viscoelasticity at low frequencies of the 20:80 blend

    Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene) and MWCNTs

    Get PDF
    The isothermal and non-isothermal crystallization behaviour of composites of a poly(propylene) (PP) and multi-walled carbon nanotubes (MWCNTs) were investigated using Differential Scanning Calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of unfilled PP and composites of PP with MWCNT loadings up to 2 (w/w). The value of the Avrami exponent (n) was greater than 2 for all samples, confirming the primary stage of crystal growth is a three-dimensional phenomenon. The activation energy (ΔE), determined using an Arrhenius type expression, for the isothermal crystallization of PP increased from 87 kJ for unfilled PP to 228 kJ on incorporation of 2 (w/w) MWCNTs to PP. An attempt was made to model the non-isothermal crystallization kinetics of composites of PP and MWCNTs using a range of mathematical models, including the Jeziorny extended Avrami equation, Ozawa equation, CazĂ© and Chuah average Avrami exponents, and a combined Avrami/Ozawa approach. The Jeziorny extended Avrami approach confirmed that the non-isothermal crystallization of MWCNT filled PP is clearly a two-stage process. Fitting of the Ozawa model was shown to be not valid and both the CazĂ© and Chuah average Avrami approaches were ineffective as neither took in to account the effects of secondary crystallization. Only the combined Avrami/Ozawa method successfully modelled the two-stage crystallization of composites of PP and MWCNTs. The activation energy (ΔE) for the non-isothermal crystallization of PP on addition of MWCNTs increased with increasing MWCNT content, up to as high as 726 kJ

    The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly (ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs)

    Get PDF
    The combination of synchrotron Small- and Wide-Angle X-ray scattering (SAXS/WAXS), and thermal analysis was used to follow the evolution of crystalline morphology and crystallization kinetics in a series of melt-processed composites of poly(ethylene terephthalate) (PET) and multiwall carbon nanotubes (MWCNT). The as-extruded PET-MWCNT composites underwent both hot and cold isothermal crystallizations where a final oriented nanohybrid shish-kebab (NHSK) crystalline structure was observed. An oriented NHSK structure was seen to persist even after melting and recrystallization of the composites. From the scattering data, we propose a model whereby the oriented MWCNTs act as heterogeneous nucleation surfaces (shish) and the polymer chains wrap around them and the crystallites (kebabs) grow epitaxially outwards during crystallization. However, depending on crystallization temperature, unoriented crystallites also grow in the polymer matrix, resulting in a combination of a NHSK and lamellar morphology. In contrast, the neat PET homopolymer showed the sporadic nucleation of a classic unoriented lamellar structure under the same isothermal crystallization conditions. These results provide a valuable insight into the distinctive modification of the crystalline morphology of melt-processed polymer-MWCNT composites prior to any secondary processing, having a significant impact on the use of MWCNTs as fillers in the processing and modification of the physical and mechanical properties of engineering polymers

    Correlation between MWCNT aspect ratio and the mechanical properties of composites of PMMA and MWCNTs

    Get PDF
    The correlation between MWCNT aspect ratio and the quasi-static and dynamic mechanical properties of composites of MWCNTs and PMMA was studied for relatively long MWCNT lengths, in the range 0.3mm to 5mm (aspect ratios up to 5 x 105) and at low loading (0.15wt%). The height of the MWCNTs prepared were modulated by controlling the amount of water vapour introduced in the reactor limiting Ostwald ripening of the catalyst, the formation of amorphous carbon and any increase in CNT diameter. The Tg of PMMA increased by up to 4 ÂșC on addition of the longest tubes as they have the ability to form physical junctions with the polymer chains which lead to enhanced PMMA-MWCNTs interactions and increased mechanical properties, Young's modulus by 20% on addition of 5mm long MWCNTs. Predictions of the Young's modulus of the composites of PMMA and MWCNT with the Mori-Tanaka theory show that future micromechanical models should account for MWCNT agglomeration and polymer-nanotube interactions as a function of CNT length
    • 

    corecore