5 research outputs found

    Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe

    Get PDF
    The road pavement industry, worldwide, has often shown reluctance in quickly implementing innovative practices; however, in the case of raw material consumption, a cultural change is necessary and, in this sense, sustainability assessment could play a major role. Along these lines, this research study aims to provide evidence to all the involved stakeholders (material producers, pavement contractors, and road authorities) of how life cycle-based techniques can be crucial in evaluating whether the adoption of asphalt mixtures with high contents of reclaimed asphalt (RA) for wearing courses is actually a sustainable practice for major European roads. An evaluation framework composed of a life cycle assessment, to calculate the carbon footprint of both pavement materials and pavement activities, and a life cycle cost assessment, performed to determine the overall economic burden of the related road pavement surface courses and maintenance strategies over a sixty-year analysis period, is presented and applied to selected case studies. These were developed together with three major European national road authorities and include scenarios involving the construction of road surfaces with asphalt mixtures containing up to 90% RA. Results have shown that whenever high-content RA mixes do not under-perform against conventional mixtures, up to 50% CO2eq savings can be registered and up to 60% economic cost reductions can be reported. The durability of road pavement layers remains a key parameter for any road pavement sustainability assessment exercises; therefore, in order to adapt the obtained results to other contexts, researchers should always consider conducting a sensitivity analysis of the reference service life and/or road authorities should somehow request road pavement durability as a pre-requisite within procurement practices

    Uncertainty analysis of life cycle assessment of asphalt surfacings

    No full text
    The Life Cycle Assessment (LCA) of asphalt pavements are associated with significant uncertainty resulting from variability in the quantity and impact of individual components, the quality of data for each component, and variability of asphalt durability. This study presents a framework to quantify and incorporate the uncertainty of LCA and asphalt durability data into LCA of asphalt surfacings. The suggested framework includes: estimating the uncertainty of asphalt production processes by the pedigree matrix method, conducting a deterministic LCA, applying Monte Carlo Simulation (MCS) to estimate the probability density functions (PDFs) of the considered impacts using the uncertainty data, deterministic solution, and asphalt durability. This framework was applied to six asphalt mixtures; the results show that there is significant uncertainty in the processes that contribute to the environmental impacts. They also showed that considering asphalt durability and its uncertainty is critical and can significantly change the results and interpretation of LCA
    corecore