13 research outputs found

    Fabrication of hollow polymer microstructures using dielectric and capillary forces

    Get PDF
    Electric Field Assisted Capillarity is a novel one-step process suitable for the fabrication of hollow polymer microstructures. The process, demonstrated to work experimentally on a microscale using Polydimethylsiloxane (PDMS), makes use of both the electrohydrodynamics of polymers subject to an applied voltage and the capillary force on the polymers caused by a low contact angle on a heavily wetted surface. Results of two-dimensional numerical simulations of the process are discussed in this paper for the special case of production of microfluidic channels. The paper investigates the effects of altering key parameters including the contact angle with the top mask, the polymer thickness and air gap, the permittivity of the polymer, the applied voltage and geometrical variations on the final morphology of the microstructure. The results from these simulations demonstrate that the capillary force caused by the contact angle has the greatest effect on the final shape of the polymer microstructures

    Enhancement of mechanical properties of pure aluminium through contactless melt sonicating treatment

    Get PDF
    A new contactless ultrasonic sonotrode method was previously designed to provide cavitation conditions inside liquid metal. The oscillation of entrapped gas bubbles followed by their final collapse causes extreme pressure changes leading to de-agglomeration and the dispersion of oxide films. The forced wetting of particle surfaces and degassing are other mechanisms that are considered to be involved. Previous publications showed a significant decrease in grain size using this technique. In this paper, the authors extend this research to strength measurements and demonstrate an improvement in cast quality. Degassing effects are also interpreted to illustrate the main mechanisms involved in alloy strengthening. The mean values and Weibull analysis are presented where appropriate to complete the data. The test results on cast Al demonstrated a maximum of 48% grain refinement, a 28% increase in elongation compared to 16% for untreated material and up to 17% increase in ultimate tensile strength (UTS). Under conditions promoting degassing, the hydrogen content was reduced by 0.1 cm3/100 g

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link

    Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment

    No full text
    The space industry requires strong lightweight alloys to decrease launching costs and to increase the reliability of components. One promising technique is the application of ultrasound to a solidifying melt, which has been demonstrated to enhance the thermo-physical qualities of the treated sample through grain refinement. The underlying mechanism is through acoustic cavitation; however, it is not well understood how cavitating bubbles disrupt the microstructure. Further understanding of the fundamentals of ultrasonic melt processing is required to optimize treatment parameters, thus enabling the efficient production of lighter, stronger alloys at an industrial scale. To achieve this goal and investigate the effect of cavitating bubbles on the solidification front, we present a high-order micro-scale acoustic cavitation model. This model is applied to the interaction between cavitating bubbles and a needle dendrite of succinonitrile 1 wt. % camphor organic transparent alloy for which high-speed digital imaging is available in the literature
    corecore