19 research outputs found

    Harnessing data science to improve integrated management of invasive pest species across Africa: An application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)

    Get PDF
    After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS).Harnessing data science to improve integrated management of invasive pest species across Africa: An application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)publishedVersio

    Stability analysis of competing insect species for a single resource

    Full text link
    The models explore the effects of resource and temperature on competition between insect species. A system of differential equations is proposed and analysed qualitatively using stability theory. A local study of the models is performed around axial, planar, and interior equilibrium points to successively estimate the effect of (i) one species interacting with a resource, (ii) two competing species for a single resource, and (iii) three competing species for a single resource. The local stability analysis of the equilibrium is discussed using Routh-Hurwitz criteria. Numerical simulation of the models is performed to investigate the sensitivity of certain key parameters. The models are used to predict population dynamics in the selected cases studied. The results show that when a single species interacts with a resource, the species will be able to establish and sustain a stable population. However, in competing situation, it is observed that the combinations of three parameters (half-saturation, growth rate, and mortality rate) determine which species wins for any given resource. Moreover, our results indicate that each species is the superior competitor for the resource for the range of temperature for which it has the lowest equilibrium resource

    Discrete Davydov's soliton in alpha-helical protein molecule with anharmonic hydrogen bond and thermal noise

    Full text link
    An improvement of the Davydov's model for energy transfer in alpha-helix protein is proposed. Using hyperbolic cosine potential type to model hydrogen bond potential, we have obtained from the adiabatic approximation, a discrete nonlinear Schrodinger equation with inverse hyperbolic sine nonlinearity. Using the two-dimensional discrete map approach, we have found a linearly stable intrinsic localized mode of the corresponding developed equation. Mobility of the intrinsic localized mode was achieved by moving the local impurity hypothesized as the anomalous band energy. The reactivity of the discrete breather under thermal noise was studied numerically with the Langevin's approach. It was shown that the intrinsic localized mode in the developed model keep its shape longer under thermal bath

    Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters (plus corrigendum)

    Full text link
    Maize (Zea mays) is a major staple food in Africa. However, maize production is severely reduced by damage caused by feeding lepidopteran pests. In East and Southern Africa, Chilo partellus is one of the most damaging cereal stem borers mainly found in the warmer lowland areas. In this study, it was hypothesized that the future distribution and abundance of C. partellus may be affected greatly by the current global warming. The temperature-dependent population growth potential of C. partellus was studied on artificial diet under laboratory conditions at six constant temperatures (15, 18, 20, 25, 28, 30, 32 and 35 degrees C), relative humidity of 75 +/- 5% and a photoperiod of L12:L12 h. Several non-linear models were fitted to the data to model development time, mortality and reproduction of the insect species. Cohort updating algorithm and rate summation approach were stochastically used for simulating age and stage structure populations and generate life-table parameters. For spatial analysis of the pest risk, three generic risk indices (index of establishment, generation number and activity index) were visualized in the geographical information system component of the advanced Insect Life Cycle modeling (ILCYM) software. To predict the future distribution of C. partellus we used the climate change scenario A1B obtained from WorldClim and CCAFS databases. The maps were compared with available data on the current distribution of C. partellus in Kenya. The results show that the development times of the different stages decreased with increasing temperatures ranging from 18 to 35 degrees C; at the extreme temperatures, 15 and 38 degrees C, no egg could hatch and no larvae completed development. The study concludes that C. partellus may potentially expands its range into higher altitude areas, highland tropics and moist transitional regions, with the highest maize potential where the species has not been recorded yet. This has serious implication in terms of food security since these areas produce approximately 80% of the total maize in East Africa

    Effect of temperature on the life history parameters of noctuid lepidopteran stem borers, Busseola fusca and Sesamia calamistis

    Full text link
    The influence of temperature on the development, mortality, fecundity and life table parameters of two important noctuid African cereal pests, Busseola fusca and Sesamia calamistis was investigated under laboratory conditions. Experiments were carried out with larvae reared on artificial diet under eight constant temperatures (12 degrees C, 15 degrees C, 18 degrees C, 20 degrees C, 25 degrees C, 28 degrees C, 30 degrees C and 35 degrees C) and a 12L:12D photoperiod. Life table parameters were calculated using Insect Life Cycle Modelling (ILCYM) software. At 12 degrees C and 35 degrees C insects failed to develop. Mean development time for both species decreased with increasing temperature for all stages. Between 15 degrees C and 30 degrees C, mean larvae development time is divided by four for both species and adult mean longevity is divided by 1.5 and 2.5, for both sexes of S. calamistis and B. fusca, respectively. Fecundity varied according to temperature; the highest was estimated at 22 degrees C and 24 degrees C for B. fusca and S. calamistis, respectively. The lower thermal threshold for B. fusca and S. calamistis was, respectively, 6 degrees C and 9 degrees C, while the upper thermal threshold was 31 degrees C and 32 degrees C, respectively. The highest intrinsic rate of natural increase for B. fusca was obtained at 25 degrees C while for S. calamistis it was obtained at 28 degrees C. The highest net reproduction was obtained at 25 degrees C for both species, but it was higher for S. calamistis than for B. fusca. The shortest population doubling time was observed at 25 degrees C for B. fusca and at 28 degrees C for S. calamistis. The optimum temperature range for development of both species was 25-28 degrees C. The lower lower thermal threshold found for B. fusca than for S. calamistis and the higher upper thermal threshold found for S. calamistis than for B. fusca explain in part the observed distribution of both species in sub-Saharan Africa with S. calamistis occurring in all the agro-ecological zones but being usually more common than B. fusca in savannah lowland and B. fusca reported mainly from mid and high altitude areas

    Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along east african mountain gradients using phenology models

    Full text link
    Lepidopteran stem borers are among the most important pests of maize in East Africa. The objective of the present study was to predict the impact of temperature change on the distribution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent phenology models of pests and parasitoids were used in a geographic information system for mapping. The three risk indices namely establishment, generation, and activity indices were computed using current temperature data record from local weather stations and future (i.e., 2055) climatic condition based on downscaled climate change data from the AFRICLIM database. The calculations were carried out using index interpolator, a sub-module of the Insect Life Cycle Modeling (ILCYM) software. Thin plate algorithm was used for interpolation of the indices. Our study confirmed that temperature was a key factor explaining the distribution of stem borers and their natural enemies but other climatic factors and factors related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony) also played a role. Results based on temperature only indicated a worsening of stem borer impact on maize production along the two East African mountain gradients studied. This was attributed to three main changes occurring simultaneously: (1) range expansion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2) increase of the number of pest generations across all altitudes, thus by 2055 damage by both pests will increase in the most productive maize zones of both transects; (3) disruption of the geographical distribution of pests and their larval parasitoids will cause an improvement of biological control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The predicted increase in pest activity will significantly increase maize yield losses in all agro-ecological zones across both transects but to a much greater extent in lower areas

    Options for calibrating CERES-maize genotype specific parameters under data-scarce environments.

    Full text link
    Most crop simulation models require the use of Genotype Specific Parameters (GSPs) which provide the Genotype component of GĂ—EĂ—M interactions. Estimation of GSPs is the most difficult aspect of most modelling exercises because it requires expensive and time-consuming field experiments. GSPs could also be estimated using multi-year and multi locational data from breeder evaluation experiments. This research was set up with the following objectives: i) to determine GSPs of 10 newly released maize varieties for the Nigerian Savannas using data from both calibration experiments and by using existing data from breeder varietal evaluation trials; ii) to compare the accuracy of the GSPs generated using experimental and breeder data; and iii) to evaluate CERES-Maize model to simulate grain and tissue nitrogen contents. For experimental evaluation, 8 different experiments were conducted during the rainy and dry seasons of 2016 across the Nigerian Savanna. Breeder evaluation data were also collected for 2 years and 7 locations. The calibrated GSPs were evaluated using data from a 4-year experiment conducted under varying nitrogen rates (0, 60 and 120kg N ha-1). For the model calibration using experimental data, calculated model efficiency (EF) values ranged between 0.88-0.94 and coefficient of determination (d-index) between 0.93-0.98. Calibration of time-series data produced nRMSE below 7% while all prediction deviations were below 10% of the mean. For breeder experiments, EF (0.58-0.88) and d-index (0.56-0.86) ranges were lower. Prediction deviations were below 17% of the means for all measured variables. Model evaluation using both experimental and breeder trials resulted in good agreement (low RMSE, high EF and d-index values) between observed and simulated grain yields, and tissue and grain nitrogen contents. It is concluded that higher calibration accuracy of CERES-Maize model is achieved from detailed experiments. If unavailable, data from breeder experimental trials collected from many locations and planting dates can be used with lower but acceptable accuracy

    Co-occurrence and abundance of pollinators and pests in horticultural systems in Africa using an integrated Earth observation-based approach

    Full text link
    ABSTRACTFlower-visiting insects that are pollinators play a critical role in promoting biodiversity in agroecosystems and agricultural food production through their pollination ecosystem service. However, several factors affect the survival of these pollinators and flower visitors, including the heavy and indiscriminate application of agrochemicals to control crop insect pests, which is impacted by various cropping patterns in a landscape and by shifting environmental conditions. Thus, this study focused on investigating the influence of cropping patterns on the spatial distribution of pollinators (Apis mellifera, Hymenoptera other than A. mellifera, and Syrphidae), flower visitors (Calliphoridae), and pests, i.e. fruit fly (Bactrocera dorsalis) and false codling moth (Thaumatotibia leucotreta) of the avocado, a pollinator-dependent crop. Cropping patterns, earth observation data and relevant environmental variables were used as the predictor variables for modeling the potential distribution and abundance of avocado pollinators, flower visitors and pests in one of the leading regions in avocado production in Kandara, Maragua, and Gatanga sub-Counties in Murang’a County, Kenya. In specific, species distribution modeling (SDM) and species abundance modeling (SAM) techniques, i.e. the maximum entropy (MaxEnt) model (presence-only data) and negative binomial (NB) distribution in a generalized linear model (GLM) (abundance data) were used, respectively. Additionally, the spatial distribution probability of the co-occurrence of the pollinators, flower visitors and pests was also analyzed. This study revealed that cropping patterns was the most consistent influential predictor variables for the distribution of avocado pollinators, flower visitors and pests. A large area of Kandara and some parts of Maragua and Gatanga sub-Counties showed a high spatial distribution probability of the studied avocado pollinators, flower visitors and pests. However, only the majority of Kandara sub-County had a high spatial distribution probability score of the potential co-occurrence of the avocado pollinators, flower visitors and pests. Further, A. mellifera was the most abundant flower-visiting pollinator compared with the other studied pollinators, while B. dorsalis was the most abundant avocado pest compared with T. leucotreta. In addition, GLM analysis indicated that no environmental variable was significant in explaining the abundance of the studied avocado pollinators, whereas precipitation and elevation derivatives of aspect and hillshade were statistically significant (p ≤ 0.05) in explaining the abundance of B. dorsalis. Solar radiation was significant in explaining only the abundance of T. leucotreta. Our study revealed that SDM and SAM modeling outputs can be used to inform decision-making for the implementation of sustainable management efforts regarding pollinators, flower visitors, and insect pests

    Global Habitat Suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): Key Parasitoids Considered for Its Biological Control

    Get PDF
    Simple Summary: The fall armyworm (FAW), Spodoptera frugiperda has now become a pest of global importance. Its introduction and detection in Africa in 2016, and subsequent introduction and spread into Asia and Australia, has put several millions of food producers and maize farmers at risk. Not all pest management strategies are sustainable. Biological control with the use of parasitoid wasps is one of the durable and environmentally sound options. The present study was initiated to predict the habitats of high establishment potential of key parasitoids of FAW in South America, which might prove to be effective as classical biological control agents of FAW in regions where it is an invasive species under current and future climate scenarios. The prospective parasitoids are the following: Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum. The results demonstrate overlapping habitat suitability areas of the pest and the parasitoids, suggesting promises for biological control options for the management of FAW under current and future climate scenarios. Abstract: The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d’Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe
    corecore