20 research outputs found

    Bockstein basis and resolution theorems in extension theory

    Get PDF
    We prove a generalization of the Edwards-Walsh Resolution Theorem: Theorem: Let G be an abelian group for which PGP_G equals the set of all primes P\mathbb{P}, where PG={pP:Z(p)P_G=\{p \in \mathbb{P}: \Z_{(p)}\in Bockstein Basis σ(G)} \sigma(G)\}. Let n in N and let K be a connected CW-complex with πn(K)G\pi_n(K)\cong G, πk(K)0\pi_k(K)\cong 0 for 0k<n0\leq k< n. Then for every compact metrizable space X with XτKX\tau K (i.e., with KK an absolute extensor for XX), there exists a compact metrizable space Z and a surjective map π:ZX\pi: Z \to X such that (a) π\pi is cell-like, (b) dimZn\dim Z \leq n, and (c) ZτKZ\tau K.Comment: 23 page

    The (largest) Lebesgue number and its relative version

    Get PDF
    In this paper we compare different definitions of the (largest) Lebesgue number of a cover U for a metric space X. We also introduce the relative version for the Lebesgue number of a covering family U for a subset A ⊆ X, and justify the relevance of introducing it by giving a corrected statement and proof of the Lemma 3.4 from the paper by Buyalo and Lebedeva (2007), involving λ-quasi homothetic maps with coefficient R between metric spaces and the comparison of the mesh and the Lebesgue number of a covering family for a subset on both sides of the map

    A proof of The Edwards-Walsh Resolution Theorem without Edwards-Walsh CW-complexes

    Get PDF
    In the paper titled "Bockstein basis and resolution theorems in extension theory" (arXiv:0907.0491v2), we stated a theorem that we claimed to be a generalization of the Edwards-Walsh resolution theorem. The goal of this note is to show that the main theorem from (arXiv:0907.0491v2) is in fact equivalent to the Edwards-Walsh resolution theorem, and also that it can be proven without using Edwards-Walsh complexes. We conclude that the Edwards-Walsh resolution theorem can be proven without using Edwards-Walsh complexes.Comment: 5 page

    Hurewicz and Dranishnikov-Smith theorems for asymptotic dimension of countable approximate groups

    Full text link
    We establish two main results for the asymptotic dimension of countable approximate groups. The first one is a Hurewicz type formula for a global morphism of countable approximate groups f:(Ξ,Ξ)(Λ,Λ)f:(\Xi, \Xi^\infty) \to (\Lambda, \Lambda^\infty), stating that asdimΞasdimΛ+asdim([kerf]c)\mathrm{asdim} \Xi \leq \mathrm{asdim} \Lambda +\mathrm{asdim} ([\mathrm{ker} f]_c). This is analogous to the Dranishnikov-Smith result for groups, and is relying on another Hurewicz type formula we prove, using a 6-local morphism instead of a global one. The second result is similar to the Dranishnikov-Smith theorem stating that, for a countable group GG, asdimG\mathrm{asdim} G is equal to the supremum of asymptotic dimensions of finitely generated subgroups of GG. Our version states that, if (Λ,Λ)(\Lambda, \Lambda^\infty) is a countable approximate group, then asdimΛ\mathrm{asdim} \Lambda is equal to the supremum of asymptotic dimensions of approximate subgroups of finitely generated subgroups of Λ\Lambda^\infty, with these approximate subgroups contained in Λ2\Lambda^2.Comment: The results in this paper were previously contained in the monograph titled "Foundations of geometric approximate group theory", by M. Cordes and the two authors listed here, but they had to be taken out of that monograph in order to shorten it. arXiv admin note: substantial text overlap with arXiv:2012.1530

    Simultaneous Z/p-acyclic resolutions of expanding sequences

    Get PDF
    We prove the following Theorem: Let X be a nonempty compact metrizable space, let l1l2...l_1 \leq l_2 \leq... be a sequence of natural numbers, and let X1X2...X_1 \subset X_2 \subset... be a sequence of nonempty closed subspaces of X such that for each k in N, dimZ/pXklk<dim_{Z/p} X_k \leq l_k < \infty. Then there exists a compact metrizable space Z, having closed subspaces Z1Z2...Z_1 \subset Z_2 \subset..., and a surjective cell-like map π:ZX\pi: Z \to X, such that for each k in N, (a) dimZklkdim Z_k \leq l_k, (b) π(Zk)=Xk\pi (Z_k) = X_k, and (c) πZk:ZkXk\pi | {Z_k}: Z_k \to X_k is a Z/p-acyclic map. Moreover, there is a sequence A1A2...A_1 \subset A_2 \subset... of closed subspaces of Z, such that for each k, dimAklkdim A_k \leq l_k, πAk:AkX\pi|{A_k}: A_k\to X is surjective, and for k in N, ZkAkZ_k\subset A_k and πAk:AkX\pi|{A_k}: A_k\to X is a UV^{l_k-1}-map. It is not required that X be the union of all X_k, nor that Z be the union of all Z_k. This result generalizes the Z/p-resolution theorem of A. Dranishnikov, and runs parallel to a similar theorem of S. Ageev, R. Jim\'enez, and L. Rubin, who studied the situation where the group was Z.Comment: 18 pages, title change in version 3, old title: "Z/p-acyclic resolutions in the strongly countable Z/p-dimensional case

    Geometrija na grupama

    Get PDF
    U članku uvodimo osnovne koncepte geometrijske teorije grupa: opisujemo kako grupu možemo shvatiti kao geometrijski objekt (Cayleyev graf) te kako na grupi uvodimo metriku. Također definiramo pojam kvaziizometrije između metričkih prostora, pa ga koristimo između grupa i njihovih Cayleyevih grafova, te između grupa i prostora. Navodimo i vrlo važan rezultat u geometrijskoj teoriji grupa – Švarc-Milnorovu lemu

    Geometrija na grupama

    Get PDF
    U članku uvodimo osnovne koncepte geometrijske teorije grupa: opisujemo kako grupu možemo shvatiti kao geometrijski objekt (Cayleyev graf) te kako na grupi uvodimo metriku. Također definiramo pojam kvaziizometrije između metričkih prostora, pa ga koristimo između grupa i njihovih Cayleyevih grafova, te između grupa i prostora. Navodimo i vrlo važan rezultat u geometrijskoj teoriji grupa – Švarc-Milnorovu lemu

    The significance of material traces in proving arsons on cars

    Get PDF
    У овом раду осврнућемо се на пожаре возила који су изазвани умишљајном људском делатношћу. Учиниоци ових кривичниних дела обично се oдлучују да пожар подметну преко поклопца мотора, задњих врата и крова проливањем бензина преко возила и паљењем ужареном материјом или отвореним пламеном, али у криминалистичкој праки нису ретки ни случајеви убацивања запаљиве направе у унутрашњост возила, подметање пожара испод мотора или задњег дела возила. У криминалистичким истрагама у циљу утврђивања узрока пожара најбитнији су материјални докази, док су искази лица веома ретки и непоуздани. Циљ овог рада је да укаже на специфичне материјалне трагове у случајевима намерно запаљених аутомобула, као што су: два центра пожара, плочасто пуцање ветробранског и других стакала, сливање запаљиве течности и разливање запаљиве течности, и њихов значај у поступку откривања и доказивања кривичних дела. Ови трагови несумњиво упућују на закључак да је пожар намерно изазван, те да је учинилац приликом извршења кривичног дела користио неки од поспешивача горења. Основна њихова особина је да су постојани, уочљиви и када је возило у потпуности изгорело, а на поједине од њих уопште не могу утицати ни лоше атмосверске прилике ни радње ватрогасаца приликом гашења пожара.Na nasl. str. : Srpsko udruženje za krivičnopravnu teoriju i praksu, LXI redovno godišnje savetovanje udruženja, septembar 2022
    corecore