24 research outputs found

    Influences of Aging and Inflation Pressure on Stiffness and Absorbed Energy of a Passenger Car Radial Tire

    Get PDF
    The objective of this study is to investigate the influences of aging and inflation pressure on the stiffness and absorbed energy of radial tires. By quasi-static compression test, new and 50,000-km used tires were determined for acting force and corresponding displacement. Between the 172.4 kPa and 241.3 kPa inflation pressure range for the new tire, the load was linearly increased with displacement. The absorbed energy was non-linear increasing with the displacement. The trend of the accumulative absorbed energy was increased when inflated the tire pressure. For both new and used tires, the stiffness and the absorbed energy were linearly increasing with the inflation pressure. The used tire was harder than the new tire observed by the higher tire stiffness and can be absorbed greater energy. At the rated inflation pressure of 220.6 kPa, after 50,000 km usage, the tire was intensified by 2.62% in terms of stiffness and by 2.22% in terms of energy absorbed. On average, over the inflation pressure in the range of 172.4 kPa to 241.3 kPa, the stiffness and absorbed energy were by 3.22 % and 2.98 % increase for the aging tire compared to the base new tire.Keywords: car; energy; passenger; stiffness; suspension; tir

    Effect of Injection Pressure and Timing of the Ternary Blends (Ethanol-Biodiesel-Diesel) on Combustion Characteristics

    Get PDF
    This research studies the combustion characteristics of a compression ignition engine when using ternary blends (ethanol-biodiesel-diesel). Because ethanol is renewable energy and can lower exhaust emissions, it is interesting to use in a diesel engine. With less effort to prepare the fuel and apply it in the engine, the blending technique is used in this research. However, phase separation readily occurs as the percentage of ethanol increases and at the low ambient temperature. Fortunately, biodiesel has been used commercially as a blend and can act as a surfactant to keep the phase stable. To comply with the market, the blend ratio used is B3E5, B7E5, and B10E10, where B stands for biodiesel, E is ethanol, and the numeric presents the percent of each fuel by volume. In addition, diesel adding 3 percent biodiesel as a lubricity enhancer is used as the reference. Combustion features such as heat release rate, ignition delay, and mass fraction burned derived from in-cylinder pressure are experimented with through a single-cylinder common-rail diesel engine. The injection pressure varies from 500, 700, and 1000 bar, while injection timing adjusts from 335, 340, 345, 350, and 355°CA. With ethanol concentration, the ignition commences earlier than diesel B3 due to the puffing phenomena. However, adding more biodiesel content results in later ignition because of the difficulty of the fuel-air mixing process. The high content of ethanol and biodiesel yields the lengthiest ignition delay.Keywords: Ethanol; Biodiesel; Ternary blends; Diesoho

    Preliminary Study of Hydrous Ethanol as a Fuel for a Spark Ignition Engine on Performance and Combustion

    Get PDF
    AbstractFuel crisis during the last few decades has encouraged the use of alternative fuels available in Thailand. Recently, the government has issued a renewable energy plan to increase ethanol production. This has emboldened ethanol to be used as a fuel for transportation. Initially, anhydrous ethanol has been blended with gasoline in different amounts for the current spark ignition (SI) engines. However, the anhydrous ethanol production needs water removal at a cost. Therefore, the use of hydrous ethanol in a SI engine is a choice to promote the policy and also save energy for ethanol production. To investigate the engine performance and combustion characteristics, this work studies the effects on an unmodified 4-cylinder port fuel injection Honda engine fuelled with gasohol (E10), anhydrous ethanol (E100) and hydrous ethanol (5% water content, Eh95). The hydrous ethanol fuelled engine can operate on low to mid loads with lower performance than that of gasohol. E100 and Eh95 consume more fuel than E10. Thermal efficiencies from both ethanol combustions are lower than those of gasohol, especially at low load. Hydrous ethanol combustion shows the lowest maximum pressure and heat release rate among the others. It is suggested that the possibility to calibrate for better engine performance and emission can be achieved

    āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āļ—āļĩāđˆāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄāđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļˆāļļāļ”āļĢāļ°āđ€āļšāļīāļ”āļ”āđ‰āļ§āļĒāļāļēāļĢāļ­āļąāļ” Influence of Gasoline Dual Fuel on a Compression Ignition Engine

    No full text
    āļ›āļąāļāļŦāļēāļ—āļēāļ‡āļ”āđ‰āļēāļ™āļĄāļĨāļžāļīāļĐāļ—āļĩāđˆāļ­āļ­āļāļĄāļēāļˆāļēāļāļĒāļēāļ™āļĒāļ™āļ•āđŒāđāļĨāļ°āļ„āļ§āļēāļĄāđ„āļĄāđˆāļŠāļĄāļ”āļļāļĨāđƒāļ™āļ”āđ‰āļēāļ™āļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ”āļĩāđ€āļ‹āļĨāđāļĨāļ°āđ€āļšāļ™āļ‹āļīāļ™ āļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āđāļ™āļ§āļ„āļīāļ”āđāļĨāļ°āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāđƒāļ™āļāļēāļĢāļ™āļģāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āđ€āļšāļ™āļ‹āļīāļ™āļĄāļēāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄāļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āļ•āđˆāļēāļ‡ āđ† āļ•āđˆāļ­āļŠāļĄāļĢāļĢāļ–āļ™āļ° āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāļĄāļĨāļžāļīāļĐ āļ•āļĨāļ­āļ”āļˆāļ™āļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļāļēāļĢāđ€āļœāļēāđ„āļŦāļĄāđ‰āđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļˆāļļāļ”āļĢāļ°āđ€āļšāļīāļ”āļ”āđ‰āļ§āļĒāļāļēāļĢāļ­āļąāļ” āļāļēāļĢāļ—āļ”āļŠāļ­āļšāļāļĢāļ°āļ—āļģāđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨāļŠāļđāļšāđ€āļ”āļĩāļĒāļ§ āļŠāļĩāđˆāļˆāļąāļ‡āļŦāļ§āļ° āđ‚āļ”āļĒāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨāļˆāļ°āļ–āļđāļāļ‰āļĩāļ”āļ•āļĢāļ‡āđ€āļ‚āđ‰āļēāđ„āļ›āđƒāļ™āļāļĢāļ°āļšāļ­āļāļŠāļđāļšāļ”āđ‰āļ§āļĒāļĢāļ°āļšāļšāļ‰āļĩāļ”āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ„āļ§āļēāļĄāļ”āļąāļ™āļŠāļđāļ‡āđāļšāļšāļĢāļēāļ‡āļĢāđˆāļ§āļĄāļ—āļĩāđˆāļ„āļ§āļšāļ„āļļāļĄāļ”āđ‰āļ§āļĒāļĢāļ°āļšāļšāļ­āļīāđ€āļĨāđ‡āļāļ—āļĢāļ­āļ™āļīāļāļŠāđŒ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 10, 20, 30, 40, 50 āđāļĨāļ° 60 āļ‚āļ­āļ‡āļ„āđˆāļēāļžāļĨāļąāļ‡āļ‡āļēāļ™ āļˆāļ°āļ–āļđāļāļ‰āļĩāļ”āđ€āļ‚āđ‰āļēāđ„āļ›āđƒāļ™āļ—āđˆāļ­āđ„āļ­āļ”āļĩāļ”āđ‰āļ§āļĒāļŦāļąāļ§āļ‰āļĩāļ”āļ„āļ§āļēāļĄāļ”āļąāļ™āļ•āđˆāļģāļ—āļĩāđˆ 3 āļšāļēāļĢāđŒāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāļĢāļ°āđ€āļŦāļĒāđāļĨāļ°āļœāļŠāļĄāļāļąāļšāļ­āļēāļāļēāļĻāđ€āļ›āđ‡āļ™āđ€āļ™āļ·āđ‰āļ­āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļāđˆāļ­āļ™āđ€āļ‚āđ‰āļēāļŠāļđāđˆāļŦāđ‰āļ­āļ‡āđ€āļœāļēāđ„āļŦāļĄāđ‰ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļ—āļąāđ‰āļ‡āļŦāļĄāļ”āļˆāļ°āļ–āļđāļāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āđˆāļēāļ—āļĩāđˆāđ„āļ”āđ‰āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ—āļģāļ‡āļēāļ™āļ”āđ‰āļ§āļĒāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨāđāļšāļšāļ›āļāļ•āļī āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļžāļšāļ§āđˆāļēāļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄāļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰ āđāļĢāļ‡āļšāļīāļ” āļāļģāļĨāļąāļ‡ āļ„āđˆāļēāļ„āļ§āļēāļĄāļ”āļąāļ™āļĒāļąāļ‡āļœāļĨāđ€āļ‰āļĨāļĩāđˆāļĒāđāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļŠāļīāļ‡āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļĄāļĩāļ„āđˆāļēāđ€āļžāļīāđˆāļĄāļŠāļđāļ‡āļ‚āļķāđ‰āļ™āļĄāļēāļāļāļ§āđˆāļēāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ—āļĩāđˆāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨāļ›āļāļ•āļī āđ‚āļ”āļĒāļĢāđ‰āļ­āļĒāļĨāļ°āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļ°āļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļŠāļąāļ”āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āļ—āļĩāđˆāđƒāļŠāđ‰ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāđ€āļĄāļ·āđˆāļ­āļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āđ€āļžāļīāđˆāļĄāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āļ„āđˆāļēāļŠāļĄāļĢāļĢāļ–āļ™āļ°āđāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļˆāļ°āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ„āļ‡āļ—āļĩāđˆāđāļĨāļ°āļĨāļ”āļĨāļ‡ āđāļĨāļ°āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāđ€āļāļīāļ”āļāļēāļĢāļ™āđ‡āļ­āļāđƒāļ™āļ—āļĩāđˆāļŠāļļāļ” āļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāļĄāļĨāļžāļīāļĐ āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄāļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āļ•āđˆāļģāļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ›āļĢāļīāļĄāļēāļ“ āļ„āļēāļĢāđŒāļšāļ­āļ™āļĄāļ­āļ™āļ­āļāđ„āļ‹āļ”āđŒ āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ‚āļ­āļ‡āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ āļŠāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđ„āļŪāđ‚āļ”āļĢāļ„āļēāļĢāđŒāļšāļ­āļ™āđāļĨāļ°āļ„āļ§āļąāļ™āļ”āļģāđ„āļ”āđ‰āđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļ”āļĩ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļāļēāļĢāđ€āļœāļēāđ„āļŦāļĄāđ‰āļ‚āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄāļšāđˆāļ‡āļŠāļĩāđ‰āļ–āļķāļ‡āļāļēāļĢāļĨāļ”āļĨāļ‡āļ‚āļ­āļ‡āļŠāđˆāļ§āļ‡āļĨāđˆāļēāļŠāđ‰āļēāđƒāļ™āļāļēāļĢāļˆāļļāļ”āļĢāļ°āđ€āļšāļīāļ” āđāļĨāļ°āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļžāļĨāļąāļ‡āļ‡āļēāļ™āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđƒāļ™āļŠāđˆāļ§āļ‡āļāļēāļĢāđ€āļœāļēāđ„āļŦāļĄāđ‰āļŠāļēāļĢāļœāļŠāļĄāļ—āļĩāđˆāļœāļŠāļĄāđ„āļ§āđ‰āļāđˆāļ­āļ™āđāļĨāđ‰āļ§āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™An air pollution problem from automobiles and an unbalanced problem of petroleum fuel consumption between gasoline and diesel have led the researches to apply gasoline in the compression ignition engine. This study investigated the effects of gasoline as the dual fuel on the performance, efficiency, exhaust gas emission and combustion characteristic of a compression ignition engine. A single-cylinder diesel engine had been used throughout the experiment. Diesel fuel was injected directly into the combustion chamber by means of the electronic high-pressure common rail injection system while gasoline (10, 20, 30, 40, 50 and 60 % by energy) was injected into the intake port by a port fuel injection at 3 bars. Gasoline was allowed to evaporate and mix with the air homogeneously before entering into the chamber. Conventional diesel combustion was also tested for the reference. The results found that when using gasoline dual-fuel torque, power, brake mean effective pressure and thermal efficiency increase with the percentage of gasoline. However, with the higher amount of gasoline ratio the performance and efficiency decrease. Finally, the knock has occurred. For exhaust emissions, a small amount of gasoline could reduce CO, THC, NOX and soot simultaneously. Combustion characteristic indicated the short ignition delay and the higher heat release rate during the premixed combustion period when gasoline dual fuel was applied in the diesel engine.KeywordsāļāļēāļĢāđƒāļŠāđ‰āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļĢāđˆāļ§āļĄ; āļ™āđ‰āļģāļĄāļąāļ™āđ€āļšāļ™āļ‹āļīāļ™; āļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨ; āļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļāļēāļĢāđ€āļœāļēāđ„āļŦāļĄāđ‰Dual fuel; Gasoline; Diesel; Combustion characteristi

    āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āļ‚āļ­āļ‡āļ­āļ°āļ‹āļīāđ‚āļ•āļ™-āļšāļīāļ§āļ—āļēāļ™āļ­āļĨ-āđ€āļ­āļ—āļēāļ™āļ­āļĨāļœāļŠāļĄāļ”āļĩāđ€āļ‹āļĨāđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļŠāļģāļŦāļĢāļąāļšāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨāļĢāļ°āļšāļšāļ‰āļĩāļ”āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āđāļšāļšāļ„āļ­āļĄāļĄāļ­āļ™āđ€āļĢāļĨ The Engine Start Ability of Acetone-Butanol-Ethanol Blended Diesel Fuel for a Common Rail Diesel Engine

    No full text
    āļāļēāļĢāļ™āļģ āļ­āļ°āļ‹āļīāđ‚āļ•āļ™-āļšāļīāļ§āļ—āļēāļ™āļ­āļĨ-āđ€āļ­āļ—āļēāļ™āļ­āļĨ āļŦāļĢāļ·āļ­ ABE āļœāļŠāļĄāļāļąāļšāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨāđƒāļ™āļŠāļąāļ”āļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 20 (ABE20) āļĄāļĩāļĻāļąāļāļĒāļ āļēāļžāđƒāļ™āļāļēāļĢāđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ—āļ”āđāļ—āļ™āļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļ”āļąāļ”āđāļ›āļĨāļ‡āđ„āļ”āđ‰āđ‚āļ”āļĒāļĄāļĩāļœāļĨāļ•āđˆāļ­āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒ āļāļēāļĢāđ€āļœāļēāđ„āļŦāļĄāđ‰ āđāļĨāļ°āļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļĄāļĨāļžāļīāļĐāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļˆāļēāļāļ”āļĩāđ€āļ‹āļĨāđ€āļžāļĩāļĒāļ‡āđ€āļĨāđ‡āļāļ™āđ‰āļ­āļĒ āļ•āļĨāļ­āļ”āļˆāļ™āļĄāļĩāđ€āļŠāļ–āļĩāļĒāļĢāļ āļēāļžāđƒāļ™āļāļēāļĢāļ—āļģāļ‡āļēāļ™āđ„āļĄāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļˆāļēāļāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āļāļēāļĢāļĄāļĩāļŠāđˆāļ§āļ™āļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āđāļ­āļĨāļāļ­āļŪāļ­āļĨāđŒāđƒāļ™ ABE20 āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļˆāļļāļ”āļĢāļ°āđ€āļšāļīāļ”āļ—āļĩāđˆāļĨāļ”āļĨāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāđ€āļĄāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđāļāļ‡āđƒāļ™āļāļēāļĢāļāļĨāļēāļĒāđ€āļ›āđ‡āļ™āđ„āļ­āļ—āļĩāđˆāļŠāļđāļ‡āļāļ§āđˆāļēāļ™āđ‰āļģāļĄāļąāļ™āļ”āļĩāđ€āļ‹āļĨ āļˆāļķāļ‡āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒ āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļˆāļķāļ‡āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰ ABE20 āđ€āļ›āđ‡āļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āļ—āļ”āļŠāļ­āļšāļ•āđˆāļēāļ‡āļāļąāļ™āđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨāļ—āļĩāđˆāļĄāļĩāļĢāļ°āļšāļšāļ‰āļĩāļ”āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āđāļšāļšāļ„āļ­āļĄāļĄāļ­āļ™āđ€āļĢāļĨ āđāļĨāļ°āļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļ§āļēāļĄāļŠāļīāđ‰āļ™āđ€āļ›āļĨāļ·āļ­āļ‡āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ‚āļ“āļ°āļ—āļģāļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āđāļĨāļ°āđ€āļ”āļīāļ™āđ€āļšāļēāļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡ 60 āļ§āļīāļ™āļēāļ—āļĩ āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļžāļšāļ§āđˆāļē ABE20 āđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āļĒāļēāļ§āļ™āļēāļ™āļāļ§āđˆāļēāļ”āļĩāđ€āļ‹āļĨāđƒāļ™āļ—āļļāļāļŠāļ āļēāļ§āļ°āļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļĨāļ°āļĄāļĩāļāļēāļĢāļšāļĢāļīāđ‚āļ āļ„āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļ—āļĩāđˆāļĄāļēāļāļāļ§āđˆāļēāļ”āļĩāđ€āļ‹āļĨ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āđ€āļĄāļ·āđˆāļ­āļĨāļ”āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āļ—āļ”āļŠāļ­āļšāļĨāļ‡ 10 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ ABE20 āļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāđ€āļĨāđ‡āļāļ™āđ‰āļ­āļĒāđāļ•āđˆāđ„āļĄāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļ„āļ§āļēāļĄāļŠāļīāđ‰āļ™āđ€āļ›āļĨāļ·āļ­āļ‡āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡Acetone-Butanol-Ethanol (ABE) blended with diesel fuel in 20% by volume (ABE20) has been a promising alternative fuel for replacing diesel fuel. Consequently, it can be used in the unmodified diesel engine with slight effects on engine performance, combustion, and emissions, presenting stability during engine operation similar to diesel. However, ABE20 is composed of alcohol, presenting the low auto-ignition ability and high latent heat of vaporization compared to diesel fuel. These can affect the engine start ability. Therefore, this work aims to evaluate the engine start ability of ABE20 on a common rail diesel engine in different testing room temperatures and to investigate the fuel consumption during the period of engine start and continuously idling in 60 seconds. The experimental results show that ABE20 presented the engine start timing longer than diesel fuel for all testing conditions and its fuel consumption was higher than diesel fuel. However, the reduction of ambient temperature by 10°C insignificantly affected engine start ability but not for fuel consumption.Keywordsāļ­āļ°āļ‹āļīāđ‚āļ•āļ™-āļšāļīāļ§āļ—āļēāļ™āļ­āļĨ-āđ€āļ­āļ—āļēāļ™āļ­āļĨ; ABE20; āļ”āļĩāđ€āļ‹āļĨ; āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĒāļ™āļ•āđŒāļ”āļĩāđ€āļ‹āļĨ; āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļ•āļēāļĢāđŒāļ—Acetone-Butanol-Ethanol; ABE20; Diesel; Diesel Engines; Engine Start Abilit
    corecore