115 research outputs found
An Improved Approach for Mapping Quantitative Trait Loci in a Pseudo-Testcross: Revisiting a Poplar Mapping Study
A pseudo-testcross pedigree is widely used for mapping quantitative trait loci (QTL) in outcrossing species, but the model for analyzing pseudo-testcross data borrowed from the inbred backcross design can only detect those QTLs that are heterozygous only in one parent. In this study, an intercross model that incorporates the high heterozygosity and phase uncertainty of outcrossing species was used to reanalyze a published data set on QTL mapping in poplar trees. Several intercross QTLs that are heterozygous in both parents were detected, which are responsible not only for biomass traits, but also for their genetic correlations. This study provides a more complete identification of QTLs responsible for economically important biomass traits in poplars
A BAC-Based Physical Map of Zhikong Scallop (Chlamys farreri Jones et Preston)
Zhikong scallop (Chlamys farreri) is one of the most economically important aquaculture species in China. Physical maps are crucial tools for genome sequencing, gene mapping and cloning, genetic improvement and selective breeding. In this study, we have developed a genome-wide, BAC-based physical map for the species. A total of 81,408 clones from two BAC libraries of the scallop were fingerprinted using an ABI 3130xl Genetic Analyzer and a fingerprinting kit developed in our laboratory. After data processing, 63,641 (∼5.8× genome coverage) fingerprints were validated and used in the physical map assembly. A total of 3,696 contigs were assembled for the physical map. Each contig contained an average of 10.0 clones, with an average physical size of 490 kb. The combined total physical size of all contigs was 1.81 Gb, equivalent to approximately 1.5 fold of the scallop haploid genome. A total of 10,587 BAC end sequences (BESs) and 167 markers were integrated into the physical map. We evaluated the physical map by overgo hybridization, BAC-FISH (fluorescence in situ hybridization), contig BAC pool screening and source BAC library screening. The results have provided evidence of the high reliability of the contig physical map. This is the first physical map in mollusc; therefore, it provides an important platform for advanced research of genomics and genetics, and mapping of genes and QTL of economical importance, thus facilitating the genetic improvement and selective breeding of the scallop and other marine molluscs
Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity
Metacomposites with negative electromagnetic parameters can be promising substitute for periodic metamaterials. In this paper, we devoted to fabricating flexible metacomposite films, which have great potential applications in the field of wearable cloaks, sensing, perfect absorption and stretchable electronic devices. The conductivity and the complex permittivity were investigated in flexible polydimethylsiloxane (PDMS)/multi-walled carbon nanotubes (MWCNTs) membranous nanocomposites, which were fabricated via in-situ polymerization process. With the increase of conductive one-dimension carbon nanotubes concentration, there was a percolation transition observed in conduction due to the formation of continuous networks. The dielectric dispersion behavior was also analyzed in the spectra of complex permittivity. It is indicated that the conduction and polarization make a combined effect on the dielectric loss in flexible PDMS/MWCNTs composites. The negative permittivity with a dielectric resonance was obtained, and was attributed to the induced electric dipoles
Calibration of linear contact stiffnesses in discrete element models using a hybrid analytical-computational framework
Efficient selections of particle-scale contact parameters in discrete element modelling remain an open question. The aim of this study is to provide a hybrid calibration framework to estimate linear contact stiffnesses (normal and tangential) for both two-dimensional and three-dimensional simulations. Analytical formulas linking macroscopic parameters (Young's modulus, Poisson's ratio) to mesoscopic particle parameters for granular systems are derived based on statistically isotropic packings under small-strain isotropic stress conditions. By taking the derived analytical solutions as initial approximations, the gradient descent algorithm automatically obtains a reliable numerical estimation. The proposed framework is validated with several numerical cases including randomly distributed monodisperse and polydisperse packings. The results show that this hybrid method practically reduces the time for artificial trials and errors to obtain reasonable stiffness parameters. The proposed framework can be extended to other parameter calibration problems in DEM
Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus
In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration
Controlled Synthesis of Carbon Nanoparticles in a Supercritical Carbon Disulfide System
Carbon nanoparticles with large surface areas were produced by the reduction of carbon disulfide with metallic lithium at 500 °C. The carbon nanoparticles account for about 80% of the carbon product. The carbon nanoparticles were characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy and N2 physisorption. The results showed that carbon nanoparticles predominate in the product. The influence of experimental conditions was investigated, which indicated that temperature plays a crucial role in the formation of carbon nanoparticles. The possible formation mechanism of the carbon nanoparticles was discussed. This method provides a simple and efficient route to the synthesis of carbon nanoparticles
- …