27 research outputs found

    Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy

    Full text link
    Proton FLASH therapy leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. To prepare for the delivery of high doses to targets, we aim to develop a deep learning-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization before FLSAH beam delivery. The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and water equivalent thickness evaluation. We investigated volumetric image reconstruction using four kV projection pairs with different source angles. Thirty lung patients were identified from the institutional database, and each patient contains a four-dimensional computed tomography dataset with ten respiratory phases. The retrospective patient study indicated that the proposed framework could reconstruct patient volumetric anatomy, including tumors and organs at risk from orthogonal x-ray projections. Considering all evaluation metrics, the kV projections with source angles of 135 and 225 degrees yielded the optimal volumetric images. The proposed framework has been demonstrated to reconstruct volumetric images with accurate lesion locations from two orthogonal x-ray projections. The embedded WET module can be used to detect potential proton beam-specific patient anatomy variations. The framework can deliver fast volumetric image generation and can potentially guide treatment delivery systems for proton FLASH therapy

    One-step Iterative Estimation of Effective Atomic Number and Electron Density for Dual Energy CT

    Full text link
    Dual-energy computed tomography (DECT) is a promising technology that has shown a number of clinical advantages over conventional X-ray CT, such as improved material identification, artifact suppression, etc. For proton therapy treatment planning, besides material-selective images, maps of effective atomic number (Z) and relative electron density to that of water (ρe\rho_e) can also be achieved and further employed to improve stopping power ratio accuracy and reduce range uncertainty. In this work, we propose a one-step iterative estimation method, which employs multi-domain gradient L0L_0-norm minimization, for Z and ρe\rho_e maps reconstruction. The algorithm was implemented on GPU to accelerate the predictive procedure and to support potential real-time adaptive treatment planning. The performance of the proposed method is demonstrated via both phantom and patient studies

    Lesion segmentation on 18F-fluciclovine PET/CT images using deep learning

    Get PDF
    Background and purposeA novel radiotracer, 18F-fluciclovine (anti-3-18F-FACBC), has been demonstrated to be associated with significantly improved survival when it is used in PET/CT imaging to guide postprostatectomy salvage radiotherapy for prostate cancer. We aimed to investigate the feasibility of using a deep learning method to automatically detect and segment lesions on 18F-fluciclovine PET/CT images.Materials and methodsWe retrospectively identified 84 patients who are enrolled in Arm B of the Emory Molecular Prostate Imaging for Radiotherapy Enhancement (EMPIRE-1) trial. All 84 patients had prostate adenocarcinoma and underwent prostatectomy and 18F-fluciclovine PET/CT imaging with lesions identified and delineated by physicians. Three different neural networks with increasing levels of complexity (U-net, Cascaded U-net, and a cascaded detection segmentation network) were trained and tested on the 84 patients with a fivefold cross-validation strategy and a hold-out test, using manual contours as the ground truth. We also investigated using both PET and CT or using PET only as input to the neural network. Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), center-of-mass distance (CMD), and volume difference (VD) were used to quantify the quality of segmentation results against ground truth contours provided by physicians.ResultsAll three deep learning methods were able to detect 144/155 lesions and 153/155 lesions successfully when PET+CT and PET only, respectively, served as input. Quantitative results demonstrated that the neural network with the best performance was able to segment lesions with an average DSC of 0.68 ± 0.15 and HD95 of 4 ± 2 mm. The center of mass of the segmented contours deviated from physician contours by approximately 2 mm on average, and the volume difference was less than 1 cc. The novel network proposed by us achieves the best performance compared to current networks. The addition of CT as input to the neural network contributed to more cases of failure (DSC = 0), and among those cases of DSC > 0, it was shown to produce no statistically significant difference with the use of only PET as input for our proposed method.ConclusionQuantitative results demonstrated the feasibility of the deep learning methods in automatically segmenting lesions on 18F-fluciclovine PET/CT images. This indicates the great potential of 18F-fluciclovine PET/CT combined with deep learning for providing a second check in identifying lesions as well as saving time and effort for physicians in contouring

    Data-Driven Volumetric Image Generation from Surface Structures using a Patient-Specific Deep Leaning Model

    Full text link
    The advent of computed tomography significantly improves patient health regarding diagnosis, prognosis, and treatment planning and verification. However, tomographic imaging escalates concomitant radiation doses to patients, inducing potential secondary cancer. We demonstrate the feasibility of a data-driven approach to synthesize volumetric images using patient surface images, which can be obtained from a zero-dose surface imaging system. This study includes 500 computed tomography (CT) image sets from 50 patients. Compared to the ground truth CT, the synthetic images result in the evaluation metric values of 26.9 Hounsfield units, 39.1dB, and 0.965 regarding the mean absolute error, peak signal-to-noise ratio, and structural similarity index measure. This approach provides a data integration solution that can potentially enable real-time imaging, which is free of radiation-induced risk and could be applied to image-guided medical procedures
    corecore