108 research outputs found

    GeneFormer: Learned Gene Compression using Transformer-based Context Modeling

    Full text link
    With the development of gene sequencing technology, an explosive growth of gene data has been witnessed. And the storage of gene data has become an important issue. Traditional gene data compression methods rely on general software like G-zip, which fails to utilize the interrelation of nucleotide sequence. Recently, many researchers begin to investigate deep learning based gene data compression method. In this paper, we propose a transformer-based gene compression method named GeneFormer. Specifically, we first introduce a modified transformer structure to fully explore the nucleotide sequence dependency. Then, we propose fixed-length parallel grouping to accelerate the decoding speed of our autoregressive model. Experimental results on real-world datasets show that our method saves 29.7% bit rate compared with the state-of-the-art method, and the decoding speed is significantly faster than all existing learning-based gene compression methods

    Noise Dimension of GAN: An Image Compression Perspective

    Full text link
    Generative adversial network (GAN) is a type of generative model that maps a high-dimensional noise to samples in target distribution. However, the dimension of noise required in GAN is not well understood. Previous approaches view GAN as a mapping from a continuous distribution to another continous distribution. In this paper, we propose to view GAN as a discrete sampler instead. From this perspective, we build a connection between the minimum noise required and the bits to losslessly compress the images. Furthermore, to understand the behaviour of GAN when noise dimension is limited, we propose divergence-entropy trade-off. This trade-off depicts the best divergence we can achieve when noise is limited. And as rate distortion trade-off, it can be numerically solved when source distribution is known. Finally, we verifies our theory with experiments on image generation.Comment: ICME2

    ECM-OPCC: Efficient Context Model for Octree-based Point Cloud Compression

    Full text link
    Recently, deep learning methods have shown promising results in point cloud compression. For octree-based point cloud compression, previous works show that the information of ancestor nodes and sibling nodes are equally important for predicting current node. However, those works either adopt insufficient context or bring intolerable decoding complexity (e.g. >600s). To address this problem, we propose a sufficient yet efficient context model and design an efficient deep learning codec for point clouds. Specifically, we first propose a window-constrained multi-group coding strategy to exploit the autoregressive context while maintaining decoding efficiency. Then, we propose a dual transformer architecture to utilize the dependency of current node on its ancestors and siblings. We also propose a random-masking pre-train method to enhance our model. Experimental results show that our approach achieves state-of-the-art performance for both lossy and lossless point cloud compression. Moreover, our multi-group coding strategy saves 98% decoding time compared with previous octree-based compression method

    Flexible Neural Image Compression via Code Editing

    Full text link
    Neural image compression (NIC) has outperformed traditional image codecs in rate-distortion (R-D) performance. However, it usually requires a dedicated encoder-decoder pair for each point on R-D curve, which greatly hinders its practical deployment. While some recent works have enabled bitrate control via conditional coding, they impose strong prior during training and provide limited flexibility. In this paper we propose Code Editing, a highly flexible coding method for NIC based on semi-amortized inference and adaptive quantization. Our work is a new paradigm for variable bitrate NIC. Furthermore, experimental results show that our method surpasses existing variable-rate methods, and achieves ROI coding and multi-distortion trade-off with a single decoder.Comment: NeurIPS 202

    Tracking of Human Arm Based on MEMS Sensors

    Get PDF
    Abstract. This paper studied the method for motion tracking of arm using triaxial accelerometer, triaxial gyroscope and electronic compass. The motion model of arm is established. The hardware of tracking system of arm is designed. The track method of arm gesture based on multi-sensors data fusion is analyzed. The compensation algorithm for motion accelerations is researched. The experimental results demonstrate that the motion acceleration compensation algorithm is validity, which can improve the dynamic measure precision of arm gesture angle

    Correcting the Sub-optimal Bit Allocation

    Full text link
    In this paper, we investigate the problem of bit allocation in Neural Video Compression (NVC). First, we reveal that a recent bit allocation approach claimed to be optimal is, in fact, sub-optimal due to its implementation. Specifically, we find that its sub-optimality lies in the improper application of semi-amortized variational inference (SAVI) on latent with non-factorized variational posterior. Then, we show that the corrected version of SAVI on non-factorized latent requires recursively applying back-propagating through gradient ascent, based on which we derive the corrected optimal bit allocation algorithm. Due to the computational in-feasibility of the corrected bit allocation, we design an efficient approximation to make it practical. Empirical results show that our proposed correction significantly improves the incorrect bit allocation in terms of R-D performance and bitrate error, and outperforms all other bit allocation methods by a large margin. The source code is provided in the supplementary material

    Unified learning-based lossy and lossless JPEG recompression

    Full text link
    JPEG is still the most widely used image compression algorithm. Most image compression algorithms only consider uncompressed original image, while ignoring a large number of already existing JPEG images. Recently, JPEG recompression approaches have been proposed to further reduce the size of JPEG files. However, those methods only consider JPEG lossless recompression, which is just a special case of the rate-distortion theorem. In this paper, we propose a unified lossly and lossless JPEG recompression framework, which consists of learned quantization table and Markovian hierarchical variational autoencoders. Experiments show that our method can achieve arbitrarily low distortion when the bitrate is close to the upper bound, namely the bitrate of the lossless compression model. To the best of our knowledge, this is the first learned method that bridges the gap between lossy and lossless recompression of JPEG images

    EMIFF: Enhanced Multi-scale Image Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection

    Full text link
    In autonomous driving, cooperative perception makes use of multi-view cameras from both vehicles and infrastructure, providing a global vantage point with rich semantic context of road conditions beyond a single vehicle viewpoint. Currently, two major challenges persist in vehicle-infrastructure cooperative 3D (VIC3D) object detection: 1)1) inherent pose errors when fusing multi-view images, caused by time asynchrony across cameras; 2)2) information loss in transmission process resulted from limited communication bandwidth. To address these issues, we propose a novel camera-based 3D detection framework for VIC3D task, Enhanced Multi-scale Image Feature Fusion (EMIFF). To fully exploit holistic perspectives from both vehicles and infrastructure, we propose Multi-scale Cross Attention (MCA) and Camera-aware Channel Masking (CCM) modules to enhance infrastructure and vehicle features at scale, spatial, and channel levels to correct the pose error introduced by camera asynchrony. We also introduce a Feature Compression (FC) module with channel and spatial compression blocks for transmission efficiency. Experiments show that EMIFF achieves SOTA on DAIR-V2X-C datasets, significantly outperforming previous early-fusion and late-fusion methods with comparable transmission costs.Comment: 7 pages, 8 figures. Accepted by ICRA 2024. arXiv admin note: text overlap with arXiv:arXiv:2303.1097

    Conditional Perceptual Quality Preserving Image Compression

    Full text link
    We propose conditional perceptual quality, an extension of the perceptual quality defined in \citet{blau2018perception}, by conditioning it on user defined information. Specifically, we extend the original perceptual quality d(pX,pX^)d(p_{X},p_{\hat{X}}) to the conditional perceptual quality d(pX∣Y,pX^∣Y)d(p_{X|Y},p_{\hat{X}|Y}), where XX is the original image, X^\hat{X} is the reconstructed, YY is side information defined by user and d(.,.)d(.,.) is divergence. We show that conditional perceptual quality has similar theoretical properties as rate-distortion-perception trade-off \citep{blau2019rethinking}. Based on these theoretical results, we propose an optimal framework for conditional perceptual quality preserving compression. Experimental results show that our codec successfully maintains high perceptual quality and semantic quality at all bitrate. Besides, by providing a lowerbound of common randomness required, we settle the previous arguments on whether randomness should be incorporated into generator for (conditional) perceptual quality compression. The source code is provided in supplementary material
    • …
    corecore