692 research outputs found
Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy
This paper studies physical layer security in a wireless ad hoc network with
numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid
full-/half-duplex receiver deployment strategy is proposed to secure legitimate
transmissions, by letting a fraction of legitimate receivers work in the
full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon
their information receptions, and letting the other receivers work in the
half-duplex mode just receiving their desired signals. The objective of this
paper is to choose properly the fraction of FD receivers for achieving the
optimal network security performance. Both accurate expressions and tractable
approximations for the connection outage probability and the secrecy outage
probability of an arbitrary legitimate link are derived, based on which the
area secure link number, network-wide secrecy throughput and network-wide
secrecy energy efficiency are optimized respectively. Various insights into the
optimal fraction are further developed and its closed-form expressions are also
derived under perfect self-interference cancellation or in a dense network. It
is concluded that the fraction of FD receivers triggers a non-trivial trade-off
between reliability and secrecy, and the proposed strategy can significantly
enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE
Transactions on Wireless Communications, 201
- …