1,094 research outputs found

    Integrating SPC and EPC for Multivariate Autocorrelated Process

    Get PDF
    Statistical process control (SPC) is a widely employed quality control method in industry. SPC is mainly designed for monitoring single quality characteristic. However, as the design of a product/process becomes complex, a process usually has multiple quality characteristics related to it. These characteristics must be monitored by multivariate SPC. When the autocorrelation is present in the process data, the traditional SPC may mislead the results. Hence, the autocorrelated data must be treated to eliminate the autocorrelation effect before employing SPC to detect the assignable causes. Besides, chance causes also have impact on the processes. When the process is out of control but no assignable cause is found, it can be adjusted by employing engineering process control (EPC). However, only using EPC to adjust the process may make inappropriate adjustments due to external disturbances or assignable causes. This study presents an integrated SPC and EPC procedure for multivariate autocorrelated process. The SPC procedure constructs a predicting model using group method of data handling (GMDH), which can transfer the autocorrelated data into uncorrelated data. Then, the Hotelling’s T2 and multivariate cumulative sum control charts are constructed to monitor the process. The EPC procedure constructs a controller utilizing data mining technique to adjust the multiple quality characteristics to their target values. Industry can employ this procedure to monitor and adjust the multivariate autocorrelated process

    Supporting Energy-Based Learning With An Ising Machine Substrate: A Case Study on RBM

    Full text link
    Nature apparently does a lot of computation constantly. If we can harness some of that computation at an appropriate level, we can potentially perform certain type of computation (much) faster and more efficiently than we can do with a von Neumann computer. Indeed, many powerful algorithms are inspired by nature and are thus prime candidates for nature-based computation. One particular branch of this effort that has seen some recent rapid advances is Ising machines. Some Ising machines are already showing better performance and energy efficiency for optimization problems. Through design iterations and co-evolution between hardware and algorithm, we expect more benefits from nature-based computing systems. In this paper, we make a case for an augmented Ising machine suitable for both training and inference using an energy-based machine learning algorithm. We show that with a small change, the Ising substrate accelerate key parts of the algorithm and achieve non-trivial speedup and efficiency gain. With a more substantial change, we can turn the machine into a self-sufficient gradient follower to virtually complete training entirely in hardware. This can bring about 29x speedup and about 1000x reduction in energy compared to a Tensor Processing Unit (TPU) host

    Nanoscale anisotropic plastic deformation in single crystal GaN

    Get PDF
    Elasto-plastic mechanical deformation behaviors of c-plane (0001) and nonpolar GaN single crystals are studied using nanoindentation, cathodoluminescence, and transmission electron microscopy. Nanoindentation tests show that c-plane GaN is less susceptible to plastic deformation and has higher hardness and Young's modulus than the nonpolar GaN. Cathodoluminescence and transmission electron microscopy characterizations of indent-induced plastic deformation reveal that there are two primary slip systems for the c-plane GaN, while there is only one most favorable slip system for the nonplane GaN. We suggest that the anisotropic elasto-plastic mechanical properties of GaN are relative to its anisotropic plastic deformation behavior

    Radio Polarization of BL Lacertae objects

    Full text link
    In this paper, using the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8 GHZ, and 14.5 GHz) radio frequencies, we studied the polarization properties for 47 BL Lacertae objects(38 radio selected BL Lacertae objects, 7 X-ray selected BL Lacertae, and two inter-middle objects (Mkn 421 and Mkn 501), and found that (1) The polarizations at higher radio frequency is higher than those at lower frequency, (2) The variability of polarization at higher radio frequency is higher than those at lower frequency, (3) The polarization is correlated with the radio spectral index, and (4) The polarization is correlated with core-dominance parameter for those objects with known core-dominance parameters suggesting that the relativistic beaming could explain the polarization characteristic of BL Lacs.Comment: 5 pages, 3 figures, 1 table. PASJ, in pres

    Synaptophysin Expression in Rat Retina Following Acute High Intraocular Pressure

    Get PDF
    In response to injury, synapse alteration may occur earlier than the changes in the cell body of neurons. Although retinal ganglion cell death and thinning of the inner part of retina were found after acute high intraocular pressure (HIOP), the structural and functional changes of synapses in the retina remain unknown. In the present study, we investigated the protein and mRNA expression of synaptophysin (SYN), an important molecule closely related to synaptic activities, synaptogenesis and synaptic plasticity. In addition, we also studied the ultrastructural changes of the retinal synapses. We found that (1) synaptophysin was upregulated transiently at both protein and mRNA level following HIOP; (2) broadened distribution of synaptophysin protein was present within the outer nuclear layer at the early stage following HIOP; (3) in the outer nuclear layer bouton-like vesicle-containing structures were observed by electron microscopy. This data suggested that, besides degeneration, synapses in rat retina may undergo regenerative events following HIOP

    N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2-benzoxazolo[4,5-d]thia­zol-2-yl)piperidine-1-carboxamide

    Get PDF
    In the title molecule, C26H24N4O2S, the dihedral angle between the isoxazole ring and the adjoining benzene ring is 21.4 (5)°, and between the isoxazole ring and the thia­zole ring is 14.3 (4)°. The piperidine ring is in a chair conformation. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds into one-dimensional chains along [001]
    • …
    corecore