17,772 research outputs found

    Wind braking of magnetars: to understand magnetar's multiwave radiation properties

    Full text link
    Magnetars are proposed to be peculiar neutron stars powered by their super strong magnetic field. Observationally, anomalous X-ray pulsars and soft gamma-ray repeaters are believed to be magnetar candidates. While more and more multiwave observations of magnetars are available, unfortunately, we see accumulating failed predictions of the traditional magnetar model. These challenges urge rethinking of magnetar. Wind braking of magnetars is one of the alternative modelings. The release of magnetic energy may generate a particle outflow (i.e., particle wind), that results in both an anomalous X-ray luminosity and significantly high spindown rate. In this wind braking scenario, only strong multipole field is necessary for a magnetar (a strong dipole field is no longer needed). Wind braking of magnetars may help us to understand their multiwave radiation properties, including (1) Non-detection of magnetars in Fermi-LAT observations, (2) The timing behaviors of low magnetic field magnetars, (3) The nature of anti-glitches, (4) The criterion for magnetar's radio emission, etc. In the wind braking model of magentars, timing events of magnetars should always be accompanied by radiative events. It is worth noting that the wind engine should be the central point in the research since other efforts with any reasonable energy mechanism may also reproduce the results.Comment: 6 pages, 1 figure, submitted to conference proceeding of SMFNS2013 (Strong electromagnetic field and neutron stars 2013

    The timing behavior of magnetar Swift J1822.3-1606: timing noise or a decreasing period derivative?

    Full text link
    The different timing results of the magnetar Swift J1822.3-1606 is analyzed and understood theoretically. It is pointed that different timing solutions are caused not only by timing noise, but also that the period derivative is decreasing after outburst. Both the decreasing period derivative and the large timing noise may be originated from wind braking of the magnetar. Future timing of Swift J1822.3-1606 will help us make clear whether its period derivative is decreasing with time or not.Comment: 5 pages, 1 figure. Accepted by Research in Astronomy and Astrophysic

    The optical/UV excess of isolated neutron stars in the RCS model

    Full text link
    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources . The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.Comment: 6 pages, 2 figures, 1 table, accepted for publication in Research in Astronomy and Astrophysic

    Nonlinear stability and ergodicity of ensemble based Kalman filters

    Full text link
    The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF) are data assimilation methods used to combine high dimensional, nonlinear dynamical models with observed data. Despite their widespread usage in climate science and oil reservoir simulation, very little is known about the long-time behavior of these methods and why they are effective when applied with modest ensemble sizes in large dimensional turbulent dynamical systems. By following the basic principles of energy dissipation and controllability of filters, this paper establishes a simple, systematic and rigorous framework for the nonlinear analysis of EnKF and ESRF with arbitrary ensemble size, focusing on the dynamical properties of boundedness and geometric ergodicity. The time uniform boundedness guarantees that the filter estimate will not diverge to machine infinity in finite time, which is a potential threat for EnKF and ESQF known as the catastrophic filter divergence. Geometric ergodicity ensures in addition that the filter has a unique invariant measure and that initialization errors will dissipate exponentially in time. We establish these results by introducing a natural notion of observable energy dissipation. The time uniform bound is achieved through a simple Lyapunov function argument, this result applies to systems with complete observations and strong kinetic energy dissipation, but also to concrete examples with incomplete observations. With the Lyapunov function argument established, the geometric ergodicity is obtained by verifying the controllability of the filter processes; in particular, such analysis for ESQF relies on a careful multivariate perturbation analysis of the covariance eigen-structure.Comment: 38 page

    Criticism and society: The birth of the modern critical subject in China

    Get PDF
    Focuses on the creation and establishment of critical theory system in China. Application of imported critical approaches and theoretical formulations; Distortion of Euramerican critical theories; Identification of traditional Chinese criticism; Inseparability of criticism and politics.published_or_final_versio

    Modulation of musical experience and prosodic complexity on lexical pitch learning

    Get PDF
    Poster Session 2: no. p2.08bWith a non-native (i.e., Thai) pitch-word learning task, the current study examined the impacts of prosodic complexity and musical experience on non-native tone identification and tone word learning by comparing musicians and non-musicians whose native languages exhibit different prosodic complexity, such as Cantonese, Mandarin, and English. We found that for the pre-training tone identification task, musicians outperformed non-musicians, regardless of their native language background. For the tone word learning task, Cantonese musicians outperformed English musicians at the beginning stage of tone word learning. No significant differences were found among non-musicians in the three languages. However, both Cantonese and Mandarin non-musicians outperformed English non-musicians in the final stage of learning, yet there was no difference between musicians. These findings underscore that prosodic complexity and musical experience have dynamic roles in influencing tone identification and tone word learning at different stages.postprin

    Geometric phase in open systems: beyond the Markov approximation and weak coupling limit

    Full text link
    Beyond the quantum Markov approximation and the weak coupling limit, we present a general theory to calculate the geometric phase for open systems with and without conserved energy. As an example, the geometric phase for a two-level system coupling both dephasingly and dissipatively to its environment is calculated. Comparison with the results from quantum trajectory analysis is presented and discussed

    AXPs and SGRs in the outer gap model: confronting Fermi observations

    Full text link
    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are magnetar candidates, i.e., neutron stars powered by strong magnetic field. If they are indeed magnetars, they will emit high-energy gamma-rays which are detectable by Fermi-LAT according to the outer gap model. However, no significant detection is reported in recent Fermi-LAT observations of all known AXPs and SGRs. Considering the discrepancy between theory and observations, we calculate the theoretical spectra for all AXPs and SGRs with sufficient observational parameters. Our results show that most AXPs and SGRs are high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E 1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been detected by Fermi-LAT. Then there is conflict between out gap model in the case of magnetars and Fermi observations. Possible explanations in the magnetar model are discussed. On the other hand, if AXPs and SGRs are fallback disk systems, i.e., accretion-powered for the persistent emissions, most of them are not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs and SGRs will help us make clear whether they are magnetars or fallback disk systems.Comment: 15 pages, 3 figures, 1 table, accepted for publication in The Astrophysical Journa
    corecore