12,538 research outputs found
The optical/UV excess of isolated neutron stars in the RCS model
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like
objects, characterized by their very well Planck-like spectrum. In studying
their spectral energy distributions, the optical/UV excess is a long standing
problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for
all seven sources, which is understandable in the resonant cyclotron scattering
(RCS) model previously addressed. The RCS model calculations show that the RCS
process can account for the observed optical/UV excess for most sources . The
flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung
emission of the electron system in addition to the RCS process.Comment: 6 pages, 2 figures, 1 table, accepted for publication in Research in
Astronomy and Astrophysic
AXPs and SGRs in the outer gap model: confronting Fermi observations
Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are
magnetar candidates, i.e., neutron stars powered by strong magnetic field. If
they are indeed magnetars, they will emit high-energy gamma-rays which are
detectable by Fermi-LAT according to the outer gap model. However, no
significant detection is reported in recent Fermi-LAT observations of all known
AXPs and SGRs. Considering the discrepancy between theory and observations, we
calculate the theoretical spectra for all AXPs and SGRs with sufficient
observational parameters. Our results show that most AXPs and SGRs are
high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E
1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been
detected by Fermi-LAT. Then there is conflict between out gap model in the case
of magnetars and Fermi observations. Possible explanations in the magnetar
model are discussed. On the other hand, if AXPs and SGRs are fallback disk
systems, i.e., accretion-powered for the persistent emissions, most of them are
not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs
and SGRs will help us make clear whether they are magnetars or fallback disk
systems.Comment: 15 pages, 3 figures, 1 table, accepted for publication in The
Astrophysical Journa
Berry phase in a composite system
The Berry phase in a composite system with only one subsystem being driven
has been studied in this Letter. We choose two spin- systems with
spin-spin couplings as the composite system, one of the subsystems is driven by
a time-dependent magnetic field. We show how the Berry phases depend on the
coupling between the two subsystems, and what is the relation between these
Berry phases of the whole system and those of the subsystems.Comment: 4 pages, 6 figure
SGXIO: Generic Trusted I/O Path for Intel SGX
Application security traditionally strongly relies upon security of the
underlying operating system. However, operating systems often fall victim to
software attacks, compromising security of applications as well. To overcome
this dependency, Intel introduced SGX, which allows to protect application code
against a subverted or malicious OS by running it in a hardware-protected
enclave. However, SGX lacks support for generic trusted I/O paths to protect
user input and output between enclaves and I/O devices.
This work presents SGXIO, a generic trusted path architecture for SGX,
allowing user applications to run securely on top of an untrusted OS, while at
the same time supporting trusted paths to generic I/O devices. To achieve this,
SGXIO combines the benefits of SGX's easy programming model with traditional
hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure
debug enclaves to behave like secure production enclaves. SGXIO surpasses
traditional use cases in cloud computing and makes SGX technology usable for
protecting user-centric, local applications against kernel-level keyloggers and
likewise. It is compatible to unmodified operating systems and works on a
modern commodity notebook out of the box. Hence, SGXIO is particularly
promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1
Geometric phase in open systems: beyond the Markov approximation and weak coupling limit
Beyond the quantum Markov approximation and the weak coupling limit, we
present a general theory to calculate the geometric phase for open systems with
and without conserved energy. As an example, the geometric phase for a
two-level system coupling both dephasingly and dissipatively to its environment
is calculated. Comparison with the results from quantum trajectory analysis is
presented and discussed
Metaphor Understanding Challenge Dataset for LLMs
Metaphors in natural language are a reflection of fundamental cognitive processes such as analogical reasoning and categorisation, and are deeply rooted in everyday communication. Metaphor understanding is therefore an essential task for large language models (LLMs). We release the Metaphor Understanding Challenge Dataset (MUNCH), designed to evaluate the metaphor understanding capabilities of LLMs. The dataset provides over 10k paraphrases for sentences containing metaphor use, as well as 1.5k instances containing inapt paraphrases. The inapt paraphrases were carefully selected to serve as control to determine whether the model indeed performs full metaphor interpretation or rather resorts to lexical similarity. All apt and inapt paraphrases were manually annotated. The metaphorical sentences cover natural metaphor uses across 4 genres (academic, news, fiction, and conversation), and they exhibit different levels of novelty. Experiments with LLaMA and GPT-3.5 demonstrate that MUNCH presents a challenging task for LLMs. The dataset is freely accessible
Attosecond probing of instantaneous AC Stark shifts in helium atoms
Based on numerical solutions of the time-dependent Schr\"odinger equation for
either one or two active electrons, we propose a method for observing
instantaneous level shifts in an oscillating strong infrared (IR) field in
time, using a single tunable attosecond pulse to probe excited states of the
perturbed atom. The ionization probability in the combined fields depends on
both, the frequency of the attosecond pulse and the time delay between both
pulses, since the IR field shifts excited energy levels into and out of
resonance with the attosecond probe pulse. We show that this method (i) allows
the detection of instantaneous atomic energy gaps with sub-laser-cycle time
resolution and (ii) can be applied as an ultrafast gate for more complex
processes such as non-sequential double-ionization
Effective Hamiltonian approach to adiabatic approximation in open systems
The adiabatic approximation in open systems is formulated through the
effective Hamiltonian approach. By introducing an ancilla, we embed the open
system dynamics into a non-Hermitian quantum dynamics of a composite system,
the adiabatic evolution of the open system is then defined as the adiabatic
dynamics of the composite system. Validity and invalidity conditions for this
approximation are established and discussed. A High-order adiabatic
approximation for open systems is introduced. As an example, the adiabatic
condition for an open spin- particle in time-dependent magnetic
fields is analyzed.Comment: 6 pages, 2 figure
- …