17,937 research outputs found
Overbarrier Resonances as Solutions of Set Inhomogeneous Schr\"{o}dinger Equations
In the paper the Schr\"odinger equation for quasibound resonance state with
complex energy is considered. The system of inhomogeneous differential
equations is obtained for the real and imaginary parts of wave function. On the
base of known solution of corresponding homogeneous equation, the inhomogeneus
system is solved with help of iteration procedure. The single-particle neutron
-state in the Woods - Saxon potential is analyzed for nucleus.Comment: 19 pages, 3 figure
Subspace Methods for Data Attack on State Estimation: A Data Driven Approach
Data attacks on state estimation modify part of system measurements such that
the tempered measurements cause incorrect system state estimates. Attack
techniques proposed in the literature often require detailed knowledge of
system parameters. Such information is difficult to acquire in practice. The
subspace methods presented in this paper, on the other hand, learn the system
operating subspace from measurements and launch attacks accordingly. Conditions
for the existence of an unobservable subspace attack are obtained under the
full and partial measurement models. Using the estimated system subspace, two
attack strategies are presented. The first strategy aims to affect the system
state directly by hiding the attack vector in the system subspace. The second
strategy misleads the bad data detection mechanism so that data not under
attack are removed. Performance of these attacks are evaluated using the IEEE
14-bus network and the IEEE 118-bus network.Comment: 12 page
Development of optical sensing system for detection of Fe ions using conductive polymer actuator based microfluidic pump
In this paper, we present a novel microfluidic optical
sensing system by combining a low-power conductive polymer
-based microfluidic pump and a microfluidic chip integrated
with an optical sensor. A self priming microfluidic pump is
developed using a polypyrrole. A microfluidic chip- optical
detector module that contained an optical cuvette with LED
and photo-diode optical sensing module was fabricated.
Integration of the micro pump and the microfluidic chips
complete the sensing system. The pump performance and its
application in chemical analysis have been demonstrated in the
detection of Fe ions
Potential Of Modified Gambir As Adsorbent For The Removal Of Selected Heavy Metal Ions From Aqueous Solutions
In this study, gambir extracted and gambir pulp has been chemically modified with formaldehyde (FGA) and hydrochloric acid (AGPA), respectively. Adsorbents were physically and chemically characterized by FTIR, BET, TGA, SEM, EDS and pHpzc. The surface of FGA was found to be granular and honeycombed shape while AGPA was in spherical and compacted shape. The pHpzc values for FGA and AGPA were found to be 3.90 and 3.62, respectively. Hydroxyl (-OH) and carboxyl (-COOH) groups were detected by FTIR. The effects of pH, adsorbent dosage, initial concentration, contact time and temperature on adsorption were studied. The optimum conditions of pH for metal ions adsorption onto both FGA and AGPA were found to be pH 5.0 (Cu2+, Pb2+ ions) dan pH 6.0 (Ni2+, Co2+ ions), respectively. Meanwhile, the optimum conditions of adsorbent dosage for metal ions adsorption onto FGA were found to be 6.00 g/L (Cu2+ ions), 10.00 g/L (Pb2+ ions), 16.00 g/L (Ni2+, Co2+ ions) and for AGPA were found to be 10.00 g/L (Pb2+ ions), 12.00 g/L (Ni2+ ions), 16.00 g/L (Cu2+, Co2+ ions), respectively. The initial adsorption process was rapid and reached equilibrium within 90 min for all metal ions. Four types of kinetic models were applied to analyze kinetic data particularly pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion. Pseudosecond order was found to be the best model that fitted well the kinetic data and predicted that chemisorptions took place in the process. Meanwhile, the intraparticle diffusion stated that there was more than one diffusion process as in this study
Tyrosine Phosphorylation-Mediated Signaling Pathways in Dictyostelium
While studies on metazoan cell proliferation, cell differentiation, and cytokine signaling laid the foundation of the current paradigms of tyrosine kinase signaling, similar studies using lower eukaryotes have provided invaluable insight for the understanding of mammalian pathways, such as Wnt and STAT pathways. Dictyostelium is one of the leading lower eukaryotic model systems where stress-induced cellular responses, Wnt-like pathways, and STAT-mediated pathways are well investigated. TheseDictyostelium pathways will be reviewed together with their mammalian counterparts to facilitate the comparative understanding of these variant and noncanonical pathways
Development of bite guard for wireless monitoring of bruxism using pressure-sensitive polymer
A wireless pressure sensing bite guard has been developed for monitoring the progress of bruxism (teeth grinding during sleep); as well as for protecting the teeth from damages. For sensing the grinding event effectively in restricted space and hostile environment, a pressure sensitive polymer composite which is safe for intra oral applications has been fabricated and encapsulated into a conventional bite guard. Also encapsulated was a microcontroller-based electronic circuit which was built in-house for data collection and transmission. A low power approach was configured to maximize the working life-time of the device to several months. The device can provide real-time tooth grinding profile through wireless communication. This device is anticipated to be a useful tool for understanding and treating bruxism
- …