11,244 research outputs found
Feature Augmentation via Nonparametrics and Selection (FANS) in High Dimensional Classification
We propose a high dimensional classification method that involves
nonparametric feature augmentation. Knowing that marginal density ratios are
the most powerful univariate classifiers, we use the ratio estimates to
transform the original feature measurements. Subsequently, penalized logistic
regression is invoked, taking as input the newly transformed or augmented
features. This procedure trains models equipped with local complexity and
global simplicity, thereby avoiding the curse of dimensionality while creating
a flexible nonlinear decision boundary. The resulting method is called Feature
Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by
generalizing the Naive Bayes model, writing the log ratio of joint densities as
a linear combination of those of marginal densities. It is related to
generalized additive models, but has better interpretability and computability.
Risk bounds are developed for FANS. In numerical analysis, FANS is compared
with competing methods, so as to provide a guideline on its best application
domain. Real data analysis demonstrates that FANS performs very competitively
on benchmark email spam and gene expression data sets. Moreover, FANS is
implemented by an extremely fast algorithm through parallel computing.Comment: 30 pages, 2 figure
- …