53 research outputs found

    Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Get PDF
    Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P <0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E(-7)), and immune-related complications (e. g. Natural killer cell mediated cytotoxity, P = 3.8E(-5); B cell receptor signaling pathway, P = 7.2E(-5)). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis

    The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor

    Get PDF
    Microphthalmia transcription factor (MITF) regulates osteoclast function by controling the expression of genes, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K in response to receptor activator of nuclear factor-kappa B ligand (RANKL)-induced signaling. To identify novel MITF target genes, we have overexpressed MITF in the murine macrophage cell line RAW264.7 subclone 4 (RAW/C4) and examined the gene expression profile after sRANKL-stimulated osteoclastogenesis. Microarray analysis identified a set of genes superinduced by MITF overexpression, including Clcn7 (chloride channel 7) and Ostm1 (osteopetrosis-associated transmembrane protein 1). Using electrophoretic mobility shift assays, we identified two MITF-binding sites (M-boxes) in the Clcn7 promoter and a single M-box in the Ostm1 promoter. An anti-MITF antibody supershifted DNA-protein complexes for promoter sites in both genes, whereas MITF binding was abolished by mutation of these sites. The Clcn7 promoter was transactivated by coexpression of MITF in reporter gene assays. Mutation of one Clcn7 M-box prevented MITF transactivation, but mutation of the second MITF-binding site only reduced basal activity. Chromatin immunoprecipitation assays confirmed that the two Clcn7 MITF binding and responsive regions in vitro bind MITF in genomic DNA. The expression of Clcn7 is repressed in the dominant negative mutant Mitf mouse, mi/mi, indicating that the dysregulated bone resorption seen in these mice can be attributed in part to transcriptional repression of Clcn7. MITF regulation of the TRAP, cathepsin K, Clcn7, and Ostm1 genes, which are critical for osteoclast resorption, suggests that the role of MITF is more significant than previously perceived and that MITF may be a master regulator of osteoclast function and bone resorption

    Trophic macrophages in development and disease

    Get PDF
    Specialized phagocytes are found in the most primitive multicellular organisms. Their roles in homeostasis and in distinguishing self from non-self have evolved with the complexity of organisms and their immune systems. Equally important, but often overlooked, are the roles of macrophages in tissue development. As discussed in this Review, these include functions in branching morphogenesis, neuronal patterning, angiogenesis, bone morphogenesis and the generation of adipose tissue. In each case, macrophage depletion impairs the formation of the tissue and compromises its function. I argue that in several diseases, the unrestrained acquisition of these developmental macrophage functions exacerbates pathology. For example, macrophages enhance tumour progression and metastasis by affecting tumour-cell migration and invasion, as well as angiogenesis

    Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes.

    No full text
    corecore