2 research outputs found

    Non-conformal coarse-grained potentials for water

    Get PDF
    Water is a notoriously difficult substance to model both accurately and efficiently. Here, we focus on descriptions with a single coarse-grained particle per molecule using the so-called Approximate Non-Conformal (ANC) and generalized Stockmayer potentials as the starting points. They are fitted using the radial density function and the density of the atomistic SPC/E model by downhill simplex optimization. We compare the results with monatomic water (mW), ELBA, as well as with direct Iterative Boltzmann Inversion (IBI) of SPC/E. The results show that symmetrical potentials result in non-transferable models, that is, they need to be reparametrized for new state-points. This indicates that transferability may require more complex models. Furthermore, the results also show that the addition of a point dipole is not sufficient to make the potentials accurate and transferable to different temperatures (300 K-500 K) and pressures without an appropriate choice of properties as targets during model optimization
    corecore