193 research outputs found

    Exchange bias-like magnetic properties in Sr2LuRuO6

    Full text link
    Exchange bias properties are observed in a double perovskite compound, Sr2LuRuO6. The observed exchange bias properties have been analyzed on the basis of some of the available theoretical models. Detailed magnetization measurements show that the exchange bias properties are associated with the Dzyaloshinsky-Moria (D-M) interaction among the antiferromagnetically ordered Ru moments (TN~32K). In addition to the usual canting of the antiferromagnetic moments, D-M interaction in this compound also causes a magnetization reversal at T~26K, which seems to trigger the exchange bias properties. Heat capacity measurements confirm the two magnetic anomalies.Comment: 5 Pages, 6 Figure

    Effect of Sb deficiency on the thermoelectric properties of Zn4Sb3

    Full text link
    We have investigated the effect of Sb-deficiency on the thermoelectric figure of merit (zT) of Zn4Sb3 prepared by solid state reaction route. At high temperatures, the Seebeck coefficient (S) and electrical conductivity ({\sigma}) increase with increase in Sb deficiency whereas the thermal conductivity (\k{appa}) decreases giving rise to an increase in the overall zT value. The observations suggest that creation of vacancies could be an effective route in improving the thermoelectric properties of Zn4Sb3 system. This coupled to nanostructuring strategy could lead to the ultimate maximum value of zT in this system for high temperature thermoelectric applications

    Observation of tunable exchange bias in Sr2_2YbRuO6_6

    Full text link
    The double perovskite compound, Sr2_{2}YbRuO6_{6}, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above TcompT_{\mathrm{comp}}.Comment: 4 Pages, 4 Figure

    Growth, Characterization, Vortex Pinning and Vortex Flow Properties of Single Crystals of Iron Chalcogenide Superconductor FeCr0.02_{0.02}Se

    Full text link
    We report the growth and characterization of single crystals of iron chalcogenide superconductor FeCr0.02_{0.02}Se. There is an enhancement of the superconducting transition temperature (Tc_{\rm c}) as compared to the Tc_{\rm c} of the single crystals of the parent compound Fe1+x_{1+x}Se by about 25%. The superconducting parameters such as the critical fields, coherence length, penetration depth and the Ginzburg-Landau parameter have been estimated for these single crystals. Analysis of the critical current data suggests a fluctuation in electronic mean free path induced (δl\delta l) pinning mechanism in this material. Thermally activated transport across the superconducting transition in the presence of external magnetic fields suggests a crossover from a single vortex pinning regime at low fields to a collective flux creep regime at higher magnetic fields. The nature of charge carriers in the normal state estimated from the Hall effect and thermal transport measurements could provide crucial information on the mechanism of superconductivity in Fe-based materials.Comment: 2 additional figures, additional discussion on nature of charge carrier

    Observation of magnetization reversal and negative magnetization in a double perovskite compound Sr2YbRuO6

    Full text link
    Detailed magnetic properties of the compound Sr2YbRuO6 are presented here. The compound belongs to the family of double perovskites forming a monoclinic structure. Magnetization meas-urements reveal clear evidence for two components of magnetic ordering aligned opposite to each other, leading to a magnetization reversal, compensation temperature (T* = 34 K) and neg-ative magnetization at low temperatures and low magnetic fields. Heat capacity measurements corroborate the presence of two components in the magnetic ordering and a noticeable third anomaly at low temperatures (~15 K) which cannot be attributed the Schottky effect. The calcu-lated magnetic entropy is substantially lower than that expected for the ground states of the or-dered moments of Ru5+ and Yb3+, indicating the presence of large crystal field effects and/ or in-complete magnetic ordering and/or magnetic frustrations well above the magnetic ordering. An attempt is made to explain the magnetization reversal within the frameworks of available models.Comment: 15 pages text, 6 figures Journal-ref: J.Phys.:Condens.Matter 20(2008)23520
    corecore