4 research outputs found

    The impact of reconstruction algorithms and time of flight information on PET/CT image quality

    No full text
    Background. The aim of the study was to explore the influence of various time-of-flight (TOF) and non-TOF reconstruction algorithms on positron emission tomography/computer tomography (PET/CT) image quality

    Optimal scan time for evaluation of parathyroid adenoma with [18F]-fluorocholine PET/CT

    No full text
    Background. Parathyroid adenomas, the most common cause of primary hyperparathyroidism, are benign tumours which autonomously produce and secrete parathyroid hormone. [18F]-fluorocholine (FCH), PET marker of cellular proliferation, was recently demonstrated to accumulate in lesions representing enlarged parathyroid tissue; however, the optimal time to perform FCH PET/CT after FCH administration is not known. The aim of this study was to determine the optimal scan time of FCH PET/CT in patients with primary hyperparathyroidism

    The impact of reconstruction algorithms and time of flight information on PET/CT image quality

    Get PDF
    BACKGROUND: The aim of the study was to explore the influence of various time-of-flight (TOF) and non-TOF reconstruction algorithms on positron emission tomography/computer tomography (PET/CT) image quality. MATERIALS AND METHODS. Measurements were performed with a triple line source phantom, consisting of capillaries with internal diameter of ∼ 1 mm and standard Jaszczak phantom. Each of the data sets was reconstructed using analytical filtered back projection (FBP) algorithm, iterative ordered subsets expectation maximization (OSEM) algorithm (4 iterations, 24 subsets) and iterative True-X algorithm incorporating a specific point spread function (PSF) correction (4 iterations, 21 subsets). Baseline OSEM (2 iterations, 8 subsets) was included for comparison. Procedures were undertaken following the National Electrical Manufacturers Association (NEMA) NU-2-2001 protocol. RESULTS: Measurement of spatial resolution in full width at half maximum (FWHM) was 5.2 mm, 4.5 mm and 2.9 mm for FBP, OSEM and True-X; and 5.1 mm, 4.5 mm and 2.9 mm for FBP+TOF, OSEM+TOF and True-X+TOF respectively. Assessment of reconstructed Jaszczak images at different concentration ratios showed that incorporation of TOF information improves cold contrast, while hot contrast only slightly, however the most prominent improvement could be seen in background variability - noise reduction. CONCLUSIONS: On the basis of the results of investigation we concluded, that incorporation of TOF information in reconstruction algorithm mostly affects reduction of the background variability (levels of noise in the image), while the improvement of spatial resolution due to incorporation of TOF information is negligible. Comparison of traditional and modern reconstruction algorithms showed that analytical FBP yields comparable results in some parameter measurements, such as cold contrast and relative count error. Iterative methods show highest levels of hot contrast, when TOF and PSF corrections were applied simultaneously

    Optimal scan time for evaluation of parathyroid adenoma with [18F]-fluorocholine PET/CT

    Get PDF
    BACKGROUND: Parathyroid adenomas, the most common cause of primary hyperparathyroidism, are benign tumours which autonomously produce and secrete parathyroid hormone. [(18)F]-fluorocholine (FCH), PET marker of cellular proliferation, was recently demonstrated to accumulate in lesions representing enlarged parathyroid tissue; however, the optimal time to perform FCH PET/CT after FCH administration is not known. The aim of this study was to determine the optimal scan time of FCH PET/CT in patients with primary hyperparathyroidism. PATIENTS AND METHODS. 43 patients with primary hyperparathyroidism were enrolled in this study. A triple-phase PET/CT imaging was performed five minutes, one and two hours after the administration of FCH. Regions of interest (ROI) were placed in lesions representing enlarged parathyroid tissue and thyroid tissue. Standardized uptake value (SUV(mean)), retention index and lesion contrast for parathyroid and thyroid tissue were calculated. RESULTS: Accumulation of FCH was higher in lesions representing enlarged parathyroid tissue in comparison to the thyroid tissue with significantly higher SUV(mean) in the second and in the third phase (p < 0.0001). Average retention index decreased significantly between the first and the second phase and increased significantly between the second and the third phase in lesions representing enlarged parathyroid tissue and decreased significantly over all three phases in thyroid tissue (p< 0.0001). The lesion contrast of lesions representing enlarged parathyroid tissue and thyroid tissue was significantly better in the second and the third phase compared to the first phase (p < 0.05). CONCLUSIONS: According to the results the optimal scan time of FCH PET/CT for localization of lesions representing enlarged parathyroid tissue is one hour after administration of the FCH
    corecore