27 research outputs found

    Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty

    Get PDF
    As life expectancy is projected to increase in the ensuing decades, individuals of older age continue to exceed the previous generation’s lifespan. Advancing age is associated with a reduction in physical and mental functional capacity, and chronic inflammation is a major factor contributing to this decline. A heightened inflammatory state can lead to exhaustion, weakness, weight loss, slow gate speed, and an overall decrease in activity level. These phenotypes define the onset of the disease process known as frailty. Frailty is a growing epidemic, which severely undermines a person’s ability to deal with outside stressors, and increases their rate of hospitalization, institutionalization, and mortality. Current interventions focus on preventative care by improving exercise capacity, strength, nutritional supplementation, diet, and mobility. However, a biological cure has heretofore remained elusive. Here, we introduce the novel therapeutic principle that mesenchymal stem cell (MSC) therapy may represent a safe, practical, and efficacious both the treatment and prevention of frailty in individuals of advancing age. To date, a phase I safety trial reveals an excellent safety profile and suggests that mesenchymal stem cells can ameliorate signs and symptoms of frailty. These early studies lay the groundwork for future large-scale clinical trials of this exciting and novel therapeutic concept that has the potential to expand health span in the aging population

    Insights Into Signaling in Cell-Based Therapy for Heart Disease

    No full text
    Over the past several decades, stem cell therapy for heart disease has been translated from the bench to the bedside and in clinical trials improves cardiac structure and function in both ischemic and nonischemic cardiac disease. Although the regenerative effects of stem cells in cardiac disease are mediated by both paracrine and cell-to-cell contact mechanisms, many of the downstream signaling pathways remain to be fully elucidated. This review outlines what is currently known about the main signaling pathways involved in mesenchymal stem cell and cardiac stem cell survival, proliferation, and migration and mechanisms of action to repair the damaged heart. </jats:p
    corecore