21 research outputs found
Observation of the Peach Fruit Moth, Carposina sasakii, Larvae in Young Apple Fruit by Dedicated Micro-Magnetic Resonance Imaging
Infestation of young apple fruits by the larvae of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was studied by a small dedicated micro-magnetic resonance imaging (MRI) apparatus using the three-dimensional (3D) gradient-echo method and the two-dimensional (2D) and 3D spin-echo methods. Changes from a young larva at 1.8 mm in length to a mature one ready to leave the fruit were observed in relation to the progression of infestation of the fruit tissues. The trace of larva intrusion was demonstrated by a series of sliced images in the 3D image data of an infested fruit, where it entered from outside the calyx, and migrated to near the vasculature around the carpel through the core. The small, dedicated MRI device was proven useful for ecological studies of the growth and movement of insect larvae in their food fruits. It can also be applied to detect the infestation of small fruits by insect larvae
Rapid Detection of Infestation of Apple Fruits by the Peach Fruit Moth, Carposina sasakii Matsumura, Larvae Using a 0.2-T Dedicated Magnetic Resonance Imaging Apparatus
Infestation of harvested apple fruits by the peach fruit moth (Carposina sasakii Matsumura) was studied using a dedicated magnetic resonance imaging (MRI) apparatus equipped with a 0.2-T permanent magnet. Infested holes on the three-dimensional (3-D) images tracked ecological movements of peach fruit moth larvae within the food fruits, and thus in their natural habitat. Sensitive short solenoid coil and surface coil detectors were devised to shorten measurement times. The short solenoid coil detected infestation holes at a rate of 6.4 s per image by the single-slice 2-D measurement. The multi-slice 2-D measurement provided six slice images of a fruit within 2 min taken by the two detectors. These results indicate that the 0.2-T MRI apparatus allows one to distinguish sound fruits from infested ones, and also as a means for plant protection and the preservation of natural ecological systems in foreign trade
The Developmental Process of Xylem Embolisms in Pine Wilt Disease Monitored by Multipoint Imaging Using Compact Magnetic Resonance Imaging1[OA]
In pine wilt disease (PWD), embolized tracheids arise after virulent pine wood nematodes (PWN), Bursaphelenchus xylophilus, invade the resin canal of pine tree; infected pine trees finally die from significant loss of xylem water conduction. We used a compact magnetic resonance imaging system with a U-shaped radio frequency (rf) probe coil to reveal the developmental process of the xylem dysfunction in PWD. Multiple cross-sectional slices along the stem axis were acquired to periodically monitor the total water distribution in each 1-year-old main stem of two 3-year-old Japanese black pines (Pinus thunbergii) after inoculation of PWN. During the development of PWD, a mass of embolized tracheids around the inoculation site rapidly enlarged in all directions. This phenomenon occurred before the significant decrease of water potential. Some patch-like embolisms were observed at all monitoring positions during the experimental period. Patchy embolisms in a cross-section did not expand, but the number of patches increased as time passed. When the significant decrease of water potential occurred, the xylem dysfunctional rate near the inoculation point exceeded 70%. Finally, almost the whole area of xylem was abruptly embolized in all cross-sections along the stem. This phenomenon occurred just after water conduction was mostly blocked in one of the cross-sections. Thus, it appears that the simultaneous expansion of embolized conduit clusters may be required to induce a large-scale embolism across the functional xylem. Consequently, xylem dysfunction in infected trees may be closely related to both the distribution and the number of PWN in the pine stem