26 research outputs found

    eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio–temporal architectures of cells

    Get PDF
    [Background] Bioinformatics capability to analyze spatio–temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. [Results] This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio–temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio–temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate ‘temporal’ discriminator genes responsible for various cell type differentiations. [Conclusions] eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio–temporal formation of cellular organizations

    Status of the RFQ linac installation and conditioning of the Linear IFMIF Prototype Accelerator

    Get PDF
    Abstract The Radio Frequency Quadrupole (RFQ) linac and 1.6 MW RF power system of the Linear IFMIF Prototype Accelerator (LIPAc) facility in the International Fusion Energy Research Center (IFERC) in Rokkasho (Japan) has been installed and conditioned. During the assembly and tuning process, the RFQ cavity was protected with a temporary tent from the potential deterioration of performance caused by dust. The vacuum in the cavity was improved through the 100 °C baking process of the cavity. The high power test of the 175 MHz RF systems up to 200 kW in CW for each of the eight RF chains was performed for checking its stable output reproducibility in Japan, before connecting 9–3/16 inch coaxial transmission lines from the RF chains to the RF input couplers of the cavity. It was confirmed that the eight RF chains provided the balanced RF power to the single RFQ cavity in-phase using a feedback loop and a synchronization system. The peak power in the cavity achieved 150 kW in the pulsed mode, which corresponds approximately to the required electric field to accelerate proton beam. Such RF conditioning process is ongoing to achieve 600 kW approximately required for deuteron beam commissioning planned in 2018

    A Case of Solitary Nonvascularized Corneal Epithelial Dysplasia

    No full text
    Background. Epithelial dysplasia is categorized as conjunctival/corneal intraepithelial neoplasia which is a precancerous lesion. The lesion is usually developed at the limbal region and grows towards central cornea in association with neovascularization into the lesion. Here, we report a case of isolated nonvascularized corneal epithelial dysplasia surrounded by normal corneal epithelium with immune histochemical finding of ocular surface tissues cytokeratins, for example, keratin 13 and keratin 12. Case Presentation. A 76-year-old man consulted us for visual disturbance with localized opacification of the corneal epithelium in his left eye. His visual acuity was 20/20 and 20/200 in his right and left eye, respectively. Slit lamp examination showed a whitish plaque-like lesion at the center of his left corneal epithelium. No vascular invasion to the lesion was found. The lesion was surgically removed and subjected to histopathological examination and diagnosed as epithelial dysplasia. Amyloidosis was excluded by direct fast scarlet 4BS (DFS) staining. Immunohistochemistry showed that the dysplastic epithelial cells express keratin 13 and vimentin, but not keratin 12, indicating that the neoplastic epithelial cells lacked corneal-type epithelium differentiation. Conclusions. The lesion was diagnosed as nonvascularized epithelial dysplasia of ocular surface. Etiology of the lesion is not known

    In vitro hemodynamic evaluation of ventricular suction conditions of the EVAHEART ventricular assist pump

    No full text
    Purpose: Mismatches between pump output and venous return in a continuous-flow ventricular assist device may elicit episodes of ventricular suction. This research describes a series of in vitro experiments to characterize the operating conditions under which the EVAHEART centrifugal blood pump (Sun Medical Technology Research Corp., Nagano, Japan) can be operated with minimal concern regarding left ventricular (LV) suction. Methods: The pump was interposed into a pneumatically driven pulsatile mock circulatory system (MCS) in the ventricular apex to aorta configuration. Under varying conditions of preload, afterload, and systolic pressure, the speed of the pump was increased step-wise until suction was observed. Identification of suction was based on pump inlet pressure. Results: In the case of reduced LV systolic pressure, reduced preload (=10 mmHg), and afterload (=60 mmHg), suction was observed for speeds =2,200 rpm. However, suction did not occur at any speed (up to a maximum speed of 2,400 rpm) when preload was kept within 10-14 mmHg and afterload =80 mmHg. Although in vitro experiments cannot replace in vivo models, the results indicated that ventricular suction can be avoided if sufficient preload and afterload are maintained. Conclusion: Conditions of hypovolemia and/or hypotension may increase the risk of suction at the highest speeds, irrespective of the native ventricular systolic pressure. However, in vitro guidelines are not directly transferrable to the clinical situation; therefore, patient-specific evaluation is recommended, which can be aided by ultrasonography at various points in the course of support

    5‐Hydroxy‐7‐methoxyflavone derivatives from Kaempferia parviflora induce skeletal muscle hypertrophy

    No full text
    Skeletal muscle plays a critical role in locomotion and energy metabolism. Maintenance or enhancement of skeletal muscle mass contributes to the improvement of mobility and prevents the development of metabolic diseases. The extracts from Kaempferia parviflora rhizomes contain at least ten methoxyflavone derivatives that exhibit enhancing effects on ATP production and glucose uptake in skeletal muscle cells. In the present study, we investigated the effects of ten K. parviflora‐derived methoxyflavone derivatives (six 5,7‐dimethoxyflavone (DMF) derivatives and four 5‐hydroxy‐7‐methoxyflavone (HMF) derivatives) on skeletal muscle hypertrophy. Murine C2C12 myotubes and senescence‐accelerated mouse‐prone 1 (SAMP1) mice treated with methoxyflavones were used as experimental models to determine the effects of HMF derivatives on myotube diameter and size and muscle mass. The four HMF derivatives, but not the six DMF derivatives, increased myotube diameter. The 5‐hydroxyflavone, 7‐methoxyflavone, and 5,7‐dihydroxyflavone had no influence on myotube size, a result that differed from HMF. Dietary administration of the mixture composed of the four HMF derivatives resulted in increase in the soleus muscle size and mass in SAMP1 mice. HMF derivatives also promoted protein synthesis in myotubes, and treatment with the intracellular Ca2+ chelator BAPTA‐AM, which depletes intracellular Ca2+ levels, inhibited this promotion. Furthermore, BAPTA‐AM inhibited HMF‐promoted protein synthesis even when myotubes were incubated in Ca2+‐free medium. These results indicate that HMF derivatives induce myotube hypertrophy and that both the 5‐hydroxyl group and the 7‐methoxy group in the flavones are necessary for myotube hypertrophy. Furthermore, these results suggest that HMF‐induced protein synthesis requires intracellular Ca2+, but not extracellular Ca2+

    Contrast-Enhanced Harmonic Endoscopic Ultrasound for Diagnosis of the Aggressiveness of Pancreatic Neuroendocrine Neoplasm

    No full text
    The purpose of this study is to clarify the associations between the enhancement patterns on contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) and the aggressiveness and prognosis of pancreatic neuroendocrine neoplasms (PanNENs). Patients who underwent CH-EUS and were pathologically diagnosed with PanNEN were included in this study. Patients were divided into three groups according to contrast-enhancement patterns on early-phase and late-phase imaging: “Group A”, vascular rich in both phases; “Group B”, vascular rich and vascular poor in early and late phases, respectively; “Group C”, vascular poor in both phases. Of 39 patients, 25 were assigned to Group A, 7 to Group B, and 7 to Group C. The median overall survival was not reached in Groups A and B and was 335 days in Group C (p < 0.001). The 1-year survival rates were 100% in Group A, 60% in Group B, and 43% in Group C. Patients in Group C showed the shortest overall survival among the three groups. The vascular-poor pattern on late-phase CH-EUS had the highest sensitivity, specificity, and accuracy for aggressive PanNENs among the patterns analyzed on CH-EUS and CECT (84.6%, 91.7%, and 89.2%, respectively). CH-EUS is useful for the diagnosis of and predicting the prognosis of PanNENs
    corecore