15 research outputs found

    D3h -Symmetric Porphyrin-Based Rigid Macrocyclic Ligands for Multicofacial Multinuclear Complexes in a One-Nanometer-Sized Cavity.

    Get PDF
    The one-step synthesis of D3h -symmetric cyclic porphyrin trimers 1 composed of three 2,2\u27-[4,4\u27-bis(methoxycarbonyl)]bipyridyl moieties and three porphyrinatozinc moieties was achieved from a nickel-mediated reductive coupling of meso-5,15-bis(6-chloro-4-methoxycarbonylpyrid-2-yl)porphyrinatozinc. Although cyclic trimers 1 were obtained as a mixture that included other cyclic and acyclic porphyrin oligomers, an extremely specific separation was observed only for cyclic trimers 1 when using columns of silica gel modified with pyrenylethyl, cyanopropyl, and other groups. Structural analysis of cyclic trimers 1 was carried out by means of NMR spectroscopy and X-ray crystallography. Treatment of an η(3) -allylpalladium complex with a cyclic trimer gave a tris(palladium) complex containing three η(3) -allylpalladium groups inside the space, which indicated that the bipyridyl moieties inside the ring could work as bidentate metalloligands.The one-step synthesis of D3h -symmetric cyclic porphyrin trimers 1 composed of three 2,2\u27-[4,4\u27-bis(methoxycarbonyl)]bipyridyl moieties and three porphyrinatozinc moieties was achieved from a nickel-mediated reductive coupling of meso-5,15-bis(6-chloro-4-methoxycarbonylpyrid-2-yl)porphyrinatozinc. Although cyclic trimers 1 were obtained as a mixture that included other cyclic and acyclic porphyrin oligomers, an extremely specific separation was observed only for cyclic trimers 1 when using columns of silica gel modified with pyrenylethyl, cyanopropyl, and other groups. Structural analysis of cyclic trimers 1 was carried out by means of NMR spectroscopy and X-ray crystallography. Treatment of an η(3) -allylpalladium complex with a cyclic trimer gave a tris(palladium) complex containing three η(3) -allylpalladium groups inside the space, which indicated that the bipyridyl moieties inside the ring could work as bidentate metalloligands

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Evaluation of localized heat transfer coefficient for induction heating apparatus by thermal fluid analysis based on the HSMAC method

    No full text
    With the development of electrical machines for achieving higher performance and smaller size, heat generation in electrical machines has also increased. Consequently, the temperature rise in electrical machines causes unexpected heating of components and makes it difficult to operate properly. Therefore, in the development of electrical machines, the accurate evaluation of temperature increase is important. In the thermal design of electrical machines, heat-conduction analysis using the heat-transfer boundary set on the surface of a heated target has been frequently performed. However, because the heat-transfer coefficient is dependent on various factors, it is often determined based on experimental or numerical simulation results. Therefore, setting the heat-transfer coefficient to a constant value for the surface of the heated target degrades the analysis accuracy because the actual phenomenon cannot be modeled. To enhance the accuracy of the heat-transfer coefficient, the coupled electromagnetic field with heat-conduction analysis finite element method (FEM), thermal-fluid analysis using FEM, and the highly simplified marker and cell method is applied to the estimation of the distribution of the heat-transfer coefficient. Moreover, to accurately calculate the localized heat-transfer coefficient, the temperature distribution and flow velocity distribution around the heated target are analyzed in the induction-heating apparatus

    Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice

    No full text
    Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is regarded as a protective factor against atherosclerosis. Therefore, augmentation of eNOS expression or NO production by pharmacological intervention is postulated to inhibit atherosclerosis. We crossed eNOS-overexpressing (eNOS-Tg) mice with atherogenic apoE-deficient (apoE-KO) mice to determine whether eNOS overexpression in the endothelium could inhibit the development of atherosclerosis. After 8 weeks on a high-cholesterol diet, the atherosclerotic lesion areas in the aortic sinus were unexpectedly increased by more than twofold in apoE-KO/eNOS-Tg mice compared with apoE-KO mice. Also, aortic tree lesion areas were approximately 50% larger in apoE-KO/eNOS-Tg mice after 12 weeks on a high-cholesterol diet. Expression of eNOS and NO production in aortas from apoE-KO/eNOS-Tg mice were significantly higher than those in apoE-KO mice. However, eNOS dysfunction, demonstrated by lower NO production relative to eNOS expression and enhanced superoxide production in the endothelium, was observed in apoE-KO/eNOS-Tg mice. Supplementation with tetrahydrobiopterin, an NOS cofactor, reduced the atherosclerotic lesion size in apoE-KO/eNOS-Tg mice to the level comparable to apoE-KO mice, possibly through the improvement of eNOS dysfunction. These data demonstrate that chronic overexpression of eNOS does not inhibit, but accelerates, atherosclerosis under hypercholesterolemia and that eNOS dysfunction appears to play important roles in the progression of atherosclerosis in apoE-KO/eNOS-Tg mice
    corecore