4 research outputs found

    Using antifibrinolytics to tackle neuroinflammation

    Get PDF
    Plasmin is generally known as a promotor of inflammation. Recent advancement suggests that it has a complex role as immunity modulator. Pharmacological inhibition of plasmin production and activity has been proven to improve neurological outcomes in traumatic brain injury and subarachnoid hemorrhage, most probably by preventing re-bleeding. The immune-modulatory properties of antifibrinolytics, however, suggest that they probably have effects unrelated to fibrinolysis inhibition, which are currently not adequately harnessed. The present work aims to give an account of the existing data regarding antifibrinolytics as agents influencing neuroinflammation. Preclinical and clinical studies on the possible influence of antifibrinolytics on neuroinflammation are scarce. However, the emerging evidence suggests that inhibition of plasmin(ogen) activity can ameliorate neuroinflammation to some extent. This data demonstrate that plasmin(ogen) is not exclusively involved in fibrinolysis, but also has other substrates and can precipitate in inflammatory processes. Investigation on the role of plasmin as the factor for the development of neuroinflammation shows the significant potential of antifibrinolytics as pharmacotherapy of neuroinflammationm, which is worthy of further exploration

    Glial cells in intracerebral transplantation for Parkinson’s disease

    Get PDF
    In the last few decades, intracerebral transplantation has grown from a dubious neuroscientific topic to a plausible modality for treatment of neurological disorders. The possibility for cell replacement opens a new field of perspectives in the therapy of neurodegenerative disorders, ischemia, and neurotrauma, with the most lessons learned from intracerebral transplantation in Parkinson’s disease. Multiple animal studies and a few small-scale clinical trials have proven the concept of intracerebral grafting, but still have to provide a uniform and highly efficient approach to the procedure, suitable for clinical application. The success of intracerebral transplantation is highly dependent on the integration of the grafted cells with the host brain. In this process, glial cells are clearly more than passive bystanders. They provide transplanted cells with mechanical support, trophics, mediate synapse formation, and participate in graft vascularization. At the same time, glial cells mediate scarring, graft rejection, and neuroinflammation, which can be detrimental. We can use this information to try to understand the mechanisms behind the glial reaction to intracerebral transplantation. Recognizing and utilizing glial reactivity can move translational research forward and provide an insight not only to post-transplantation events but also to mechanisms of neuronal death and degeneration. Knowledge about glial reactivity to transplanted cells could also be a key for optimization of transplantation protocols, which ultimately should contribute to greater patient benefit

    Easy to build cost-effective acute brain slice incubation system for parallel analysis of multiple treatment conditions

    Get PDF
    Background Acute brain slices represent a powerful tool for analysis of brain function in physiology and pathology. Commercial systems and custom-build solutions with carbogen (95% O2/5% CO2) aeration, but they are expensive, have a high working volume requiring large amount of substances, and only limited options for treatment in parallel are possible. New method We developed a novel cost-effective incubation system using materials available in every laboratory, allowing parallel incubation of several treatment conditions, thus also reducing the number of experimental animals. Our system incubation parameters were optimized for cortical neuron observation. Results We tested several different options using 6, 12 or 24 standard culture well plates, combining them with cell strainer baskets inside. The system was placed in a pre-warmed incubator at 37 °C. Carbogen was injected through a 22 gauge needle, positioned between the basket and the wall of the well. Best results were achieved in a 6-well plate. In 12 and 24-well plates bubbles accumulated beneath the basket, displacing it upwards, making it unsuitable for our purposes. The gas oxygenized the medium without mechanically disturbing the slices, protected within the strainer basket, but still allowing optimal diffusion through the 100 µm pores. In a 6-well plate, six simultaneous treatments were possible in parallel. LDH/Cytotoxicity tests showed an acute toxicity of less than 7%. The system lost about 2.5% per hour of the fluid through evaporation, which was replenished every 2 h. Up to 6 h after treatment, however, this evaporation was excellently tolerated by the neurons even without fluid replenishment, most probably due to the anti-swelling effect of the mildly hypertonic medium. We performed two staining procedures, working excellently with this experimental setup, namely – a modified DiI staining and a slice silver impregnation method, both confirming the intact neuronal morphology. Preserved CA3 calcium influx and removal response following KCl depolarization confirmed the normal physiology of the pyramidal neurons 6 h after exposure in the system. Comparison to existing methods The proposed system is much cheaper than the commercial solutions, can be constructed in any lab, allows up to 6 different treatments in parallel, which none of the existing systems allows. Antibiotic presence in the incubation medium and adequate evaporation control is required if longer incubation (> 6 h) is needed. Lower incubation volumes (3–6 ml) allow sparing expensive reagents. Our procedure was optimized for cortical neurons, further fine tuning to meet other specific requirements is possible. Conclusions The system we propose allows filling the gap for budget solutions for short to mid-term incubation of acute brain slices

    Distribution of serotonin positive mast cells in the intrapulmonary airways of rats

    No full text
    Based on the scarce information about the expression of serotonin by mast cells in normal rat lung, we aimed to describe in detail the distribution of these cells in the wall of bronchi and bronchioles, as well as in the interalveolar septa. To visualize serotonin-positive mast cells a toluidine blue staining was performed immediately after the immunohistochemical staining on the same sections. Thus, we estimated the density of mast cell in different layers of intrapulmonary airways and in alveolar parenchyma. A reduction of mast cell numbers from bronchi to bronchioles, and then to alveolar septa was detected. In conclusion, detailed information about the density of serotonin positive mast cells in the layers of the wall of intrapulmonary airways and alveolar parenchyma is presented. Our findings confirm the role of these cells as one of the main sources of serotonin, which participate in maintaining the homeostasis in the lung
    corecore